Marco Niello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2642844/publications.pdf

Version: 2024-02-01

		1040056	1125743
13	408	9	13
papers	citations	h-index	g-index
17	17	17	497
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Occlusion of the human serotonin transporter is mediated by serotonin-induced conformational changes in the bundleAdomain. Journal of Biological Chemistry, 2022, 298, 101613.	3.4	13
2	A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules, 2022, 12, 881.	4.0	14
3	Role of amino terminal substitutions in the pharmacological, rewarding and psychostimulant profiles of novel synthetic cathinones. Neuropharmacology, 2021, 186, 108475.	4.1	20
4	Effects of Hydroxylated Mephedrone Metabolites on Monoamine Transporter Activity in vitro. Frontiers in Pharmacology, 2021, 12, 654061.	3.5	9
5	α-PPP and its derivatives are selective partial releasers at the human norepinephrine transporter. Neuropharmacology, 2021, 190, 108570.	4.1	15
6	Handling of intracellular K+ determines voltage dependence of plasmalemmal monoamine transporter function. ELife, 2021, 10, .	6.0	21
7	The Interaction of Organic Cation Transporters 1-3 and PMAT with Psychoactive Substances. Handbook of Experimental Pharmacology, 2021, 266, 199-214.	1.8	13
8	Interaction Profiles of Central Nervous System Active Drugs at Human Organic Cation Transporters 1–3 and Human Plasma Membrane Monoamine Transporter. International Journal of Molecular Sciences, 2021, 22, 12995.	4.1	10
9	Allosteric Modulation of Neurotransmitter Transporters as a Therapeutic Strategy. Trends in Pharmacological Sciences, 2020, 41, 446-463.	8.7	50
10	para-Trifluoromethyl-methcathinone is an allosteric modulator of the serotonin transporter. Neuropharmacology, 2019, 161, 107615.	4.1	26
11	Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. Journal of Neuroscience, 2018, 38, 1959-1972.	3.6	148
12	Neuropharmacology of Synthetic Cathinones. Handbook of Experimental Pharmacology, 2018, 252, 113-142.	1.8	61
13	Are reprogrammed cells a useful tool for studying dopamine dysfunction in psychotic disorders? A review of the current evidence. European Journal of Neuroscience, 2017, 45, 45-57.	2.6	4