
Ehud Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264270/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Reports, 2022, 38, 110350.	2.9	8
2	Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS ONE, 2021, 16, e0243522.	1.1	9
3	Organismal Protein Homeostasis Mechanisms. Genetics, 2020, 215, 889-901.	1.2	29
4	Lipid Assemblies at the Crossroads of Aging, Proteostasis, and Neurodegeneration. Trends in Cell Biology, 2019, 29, 954-963.	3.6	6
5	Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis. Aging Cell, 2019, 18, e13047.	3.0	8
6	Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. Journal of Molecular Biology, 2019, 431, 1711-1728.	2.0	12
7	Vesicleâ€mediated secretion of misfolded prion protein molecules from cyclosporin Aâ€treated cells. FASEB Journal, 2018, 32, 1479-1492.	0.2	8
8	Self-assembly of a metallo-peptide into a drug delivery system using a "switch on―displacement strategy. Journal of Materials Chemistry B, 2018, 6, 8228-8237.	2.9	16
9	Modulation of caveolae by insulin/ <scp>IGF</scp> â€1 signaling regulates aging of <i>Caenorhabditis elegans</i> . EMBO Reports, 2018, 19, .	2.0	22
10	The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in Caenorhabditis elegans. ELife, 2018, 7, .	2.8	19
11	A multi-animal tracker for studying complex behaviors. BMC Biology, 2017, 15, 29.	1.7	35
12	Protein Quality Control in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023523.	2.3	68
13	The Emerging Roles of Early Protein Folding Events in the Secretory Pathway in the Development of Neurodegenerative Maladies. Frontiers in Neuroscience, 2017, 11, 48.	1.4	9
14	PrP-containing aggresomes are cytosolic components of an endoplasmic reticulum quality control mechanism. Journal of Cell Science, 2016, 129, 3635-3647.	1.2	8
15	From mutated genes to familial Alzheimer's disease. Cell Cycle, 2016, 15, 877-878.	1.3	Ο
16	The inhibition of IGFâ€1 signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB Journal, 2016, 30, 1656-1669.	0.2	21
17	Alzheimer's diseaseâ€causing proline substitutions lead to presenilin 1 aggregation and malfunction. EMBO Journal, 2015, 34, 2820-2839.	3.5	29
18	The Roles of Cellular and Organismal Aging in the Development of Late-Onset Maladies. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 1-23.	9.6	31

Ehud Cohen

#	Article	IF	CITATIONS
19	Proteostasis collapse, inter-tissue communication, and the regulation of aging at the organismal level. Frontiers in Genetics, 2015, 6, 80.	1.1	7
20	Differential Regulation of the Heat Shock Factor 1 and DAF-16 by Neuronal nhl-1 in the Nematode C.Âelegans. Cell Reports, 2014, 9, 2192-2205.	2.9	38
21	A novel inhibitor of the insulin/IGF signaling pathway protects from ageâ€onset, neurodegenerationâ€linked proteotoxicity. Aging Cell, 2014, 13, 165-174.	3.0	63
22	The nematode Caenorhabditis elegans: A versatile model for the study of proteotoxicity and aging. Methods, 2014, 68, 458-464.	1.9	30
23	A Neuronal GPCR is Critical for the Induction of the Heat Shock Response in the Nematode <i>C. elegans</i> . Journal of Neuroscience, 2013, 33, 6102-6111.	1.7	49
24	Aging, Protein Aggregation, Chaperones and Neurodegenerative Disorders: Mechanisms of Coupling and Therapeutic Opportunities. Rambam Maimonides Medical Journal, 2012, 3, e0021.	0.4	13
25	Temporal requirements of heat shock factorâ€l for longevity assurance. Aging Cell, 2012, 11, 491-499.	3.0	54
26	Quality Control Compartments Coming of Age. Traffic, 2012, 13, 635-642.	1.3	30
27	Countering neurodegeneration by reducing the activity of the insulin/IGF signaling pathway: Current knowledge and future prospects. Experimental Gerontology, 2011, 46, 124-128.	1.2	11
28	Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments. Journal of Cell Science, 2011, 124, 1891-1902.	1.2	32
29	Temporal requirements of insulin/IGFâ€1 signaling for proteotoxicity protection. Aging Cell, 2010, 9, 126-134.	3.0	73
30	A kinetic assessment of the <i>C. elegans</i> amyloid disaggregation activity enables uncoupling of disassembly and proteolysis. Protein Science, 2009, 18, 2231-2241.	3.1	31
31	Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice. Cell, 2009, 139, 1157-1169.	13.5	450
32	The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature Reviews Neuroscience, 2008, 9, 759-767.	4.9	282
33	Opposing Activities Protect Against Age-Onset Proteotoxicity. Science, 2006, 313, 1604-1610.	6.0	782
34	Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO Journal, 2003, 22, 404-417.	3.5	84