Ehud Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264270/publications.pdf

Version: 2024-02-01

430754 395590 2,367 34 18 33 h-index citations g-index papers 36 36 36 3458 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Opposing Activities Protect Against Age-Onset Proteotoxicity. Science, 2006, 313, 1604-1610.	6.0	782
2	Reduced IGF-1 Signaling Delays Age-Associated Proteotoxicity in Mice. Cell, 2009, 139, 1157-1169.	13.5	450
3	The insulin paradox: aging, proteotoxicity and neurodegeneration. Nature Reviews Neuroscience, 2008, 9, 759-767.	4.9	282
4	Scrapie-like prion protein accumulates in aggresomes of cyclosporin A-treated cells. EMBO Journal, 2003, 22, 404-417.	3.5	84
5	Temporal requirements of insulin/IGFâ€1 signaling for proteotoxicity protection. Aging Cell, 2010, 9, 126-134.	3.0	73
6	Protein Quality Control in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2017, 9, a023523.	2.3	68
7	A novel inhibitor of the insulin/IGF signaling pathway protects from ageâ€onset, neurodegenerationâ€inked proteotoxicity. Aging Cell, 2014, 13, 165-174.	3.0	63
8	Temporal requirements of heat shock factorâ€1 for longevity assurance. Aging Cell, 2012, 11, 491-499.	3.0	54
9	A Neuronal GPCR is Critical for the Induction of the Heat Shock Response in the Nematode <i>C. elegans </i> . Journal of Neuroscience, 2013, 33, 6102-6111.	1.7	49
10	Differential Regulation of the Heat Shock Factor 1 and DAF-16 by Neuronal nhl-1 in the Nematode C.Âelegans. Cell Reports, 2014, 9, 2192-2205.	2.9	38
11	A multi-animal tracker for studying complex behaviors. BMC Biology, 2017, 15, 29.	1.7	35
12	Cyclosporin-A-induced prion protein aggresomes are dynamic quality-control cellular compartments. Journal of Cell Science, 2011, 124, 1891-1902.	1.2	32
13	A kinetic assessment of the <i>C. elegans</i> amyloid disaggregation activity enables uncoupling of disassembly and proteolysis. Protein Science, 2009, 18, 2231-2241.	3.1	31
14	The Roles of Cellular and Organismal Aging in the Development of Late-Onset Maladies. Annual Review of Pathology: Mechanisms of Disease, 2015, 10, 1-23.	9.6	31
15	Quality Control Compartments Coming of Age. Traffic, 2012, 13, 635-642.	1.3	30
16	The nematode Caenorhabditis elegans: A versatile model for the study of proteotoxicity and aging. Methods, 2014, 68, 458-464.	1.9	30
17	Alzheimer's diseaseâ€eausing proline substitutions lead to presenilin 1 aggregation and malfunction. EMBO Journal, 2015, 34, 2820-2839.	3.5	29
18	Organismal Protein Homeostasis Mechanisms. Genetics, 2020, 215, 889-901.	1.2	29

#	Article	IF	CITATIONS
19	Modulation of caveolae by insulin/ <scp>IGF</scp> â€l signaling regulates aging of <i>Caenorhabditis elegans</i> . EMBO Reports, 2018, 19, .	2.0	22
20	The inhibition of IGF‹ signaling promotes proteostasis by enhancing protein aggregation and deposition. FASEB Journal, 2016, 30, 1656-1669.	0.2	21
21	The insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in Caenorhabditis elegans. ELife, 2018, 7, .	2.8	19
22	Self-assembly of a metallo-peptide into a drug delivery system using a "switch on―displacement strategy. Journal of Materials Chemistry B, 2018, 6, 8228-8237.	2.9	16
23	Aging, Protein Aggregation, Chaperones and Neurodegenerative Disorders: Mechanisms of Coupling and Therapeutic Opportunities. Rambam Maimonides Medical Journal, 2012, 3, e0021.	0.4	13
24	Expanded CUG Repeats Trigger Disease Phenotype and Expression Changes through the RNAi Machinery in C. elegans. Journal of Molecular Biology, 2019, 431, 1711-1728.	2.0	12
25	Countering neurodegeneration by reducing the activity of the insulin/IGF signaling pathway: Current knowledge and future prospects. Experimental Gerontology, 2011, 46, 124-128.	1.2	11
26	The Emerging Roles of Early Protein Folding Events in the Secretory Pathway in the Development of Neurodegenerative Maladies. Frontiers in Neuroscience, 2017, 11, 48.	1.4	9
27	Temporal requirements of SKN-1/NRF as a regulator of lifespan and proteostasis in Caenorhabditis elegans. PLoS ONE, 2021, 16, e0243522.	1.1	9
28	PrP-containing aggresomes are cytosolic components of an endoplasmic reticulum quality control mechanism. Journal of Cell Science, 2016, 129, 3635-3647.	1.2	8
29	Vesicleâ∈mediated secretion of misfolded prion protein molecules from cyclosporin Aâ€treated cells. FASEB Journal, 2018, 32, 1479-1492.	0.2	8
30	Gene expression modulation by the linker of nucleoskeleton and cytoskeleton complex contributes to proteostasis. Aging Cell, 2019, 18, e13047.	3.0	8
31	Neuropeptide signaling and SKN-1 orchestrate differential responses of the proteostasis network to dissimilar proteotoxic insults. Cell Reports, 2022, 38, 110350.	2.9	8
32	Proteostasis collapse, inter-tissue communication, and the regulation of aging at the organismal level. Frontiers in Genetics, 2015, 6, 80.	1.1	7
33	Lipid Assemblies at the Crossroads of Aging, Proteostasis, and Neurodegeneration. Trends in Cell Biology, 2019, 29, 954-963.	3.6	6
34	From mutated genes to familial Alzheimer's disease. Cell Cycle, 2016, 15, 877-878.	1.3	0