
Lin-Guo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE, 2018, 13, e0197563.	2.5	188
2	Thermoanaerobacterium thermosaccharolyticum \hat{l}^2 -glucosidase: a glucose-tolerant enzyme with high specific activity for cellobiose. Biotechnology for Biofuels, 2012, 5, 31.	6.2	131
3	Two-phase systems developed with hydrophilic and hydrophobic deep eutectic solvents for simultaneously extracting various bioactive compounds with different polarities. Green Chemistry, 2018, 20, 1879-1886.	9.0	127
4	Efficient extraction of proanthocyanidin from Ginkgo biloba leaves employing rationally designed deep eutectic solvent-water mixture and evaluation of the antioxidant activity. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 317-326.	2.8	101
5	Overexpression and characterization of a glucose-tolerant β-glucosidase from Thermotoga thermarum DSM 5069T with high catalytic efficiency of ginsenoside Rb1 to Rd. Journal of Molecular Catalysis B: Enzymatic, 2013, 95, 62-69.	1.8	62
6	Effects of thermal modification on the physical, chemical and micromechanical properties of Masson pine wood (<i>Pinus massoniana</i> Lamb.). Holzforschung, 2018, 72, 1063-1070.	1.9	61
7	One-Pot Synthesis of Hyperoside by a Three-Enzyme Cascade Using a UDP-Galactose Regeneration System. Journal of Agricultural and Food Chemistry, 2017, 65, 6042-6048.	5.2	58
8	Metabolic Engineering of <i>Escherichia coli</i> for Astragalin Biosynthesis. Journal of Agricultural and Food Chemistry, 2016, 64, 7966-7972.	5.2	44
9	Overexpression and characterization of a Ca2+ activated thermostable β-glucosidase with high ginsenoside Rb1 to ginsenoside 20(S)-Rg3 bioconversion productivity. Journal of Industrial Microbiology and Biotechnology, 2015, 42, 839-850.	3.0	42
10	Improvement of Animal Feed Additives of Ginkgo Leaves through Solid-state Fermentation using <i>Aspergillus niger</i> . International Journal of Biological Sciences, 2018, 14, 736-747.	6.4	41
11	Enrichment and Purification of Total Ginkgo Flavonoid O-Glycosides from Ginkgo Biloba Extract with Macroporous Resin and Evaluation of Anti-Inflammation Activities In Vitro. Molecules, 2018, 23, 1167.	3.8	37
12	Enhancing the thermostability of \hat{I}_{\pm} -L-rhamnosidase from Aspergillus terreus and the enzymatic conversion of rutin to isoquercitrin by adding sorbitol. BMC Biotechnology, 2017, 17, 21.	3.3	35
13	Characterization of a α-l-rhamnosidase from Bacteroides thetaiotaomicron with high catalytic efficiency of epimedin C. Bioorganic Chemistry, 2018, 81, 461-467.	4.1	34
14	Characterization of a novel thermostable and xylose-tolerant GH 39 β-xylosidase from Dictyoglomus thermophilum. BMC Biotechnology, 2018, 18, 29.	3.3	33
15	Effect of dietary supplementation with fermented Ginkgo-leaves on performance, egg quality, lipid metabolism and egg-yolk fatty acids composition in laying hens. Livestock Science, 2013, 155, 77-85.	1.6	32
16	Efficient Biotransformation of Luteolin to Isoorientin through Adjusting Induction Strategy, Controlling Acetic Acid, and Increasing UDP-Glucose Supply in <i>Escherichia coli</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 331-340.	5.2	30
17	Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovorans cellulose binding domain and its application in hydrolysis of microcrystalline cellulose. BMC Biotechnology, 2013, 13, 101.	3.3	29
18	Enzymatic transformation of ginsenoside Rb1 to ginsenoside 20(S)-Rg3 by GH3 β-glucosidase from Thermotoga thermarum DSM 5069T. Journal of Molecular Catalysis B: Enzymatic, 2015, 113, 104-109.	1.8	29

#	Article	IF	CITATIONS
19	Identification of Human Acetylcholinesterase Inhibitors from the Constituents of EGb761 by Modeling Docking and Molecular Dynamics Simulations. Combinatorial Chemistry and High Throughput Screening, 2018, 21, 41-49.	1.1	28
20	Effect of the penetration of isocyanates (pMDI) on the nanomechanics of wood cell wall evaluated by AFM-IR and nanoindentation (NI). Holzforschung, 2018, 72, 301-309.	1.9	27
21	Overexpression and characterization of laccase from Trametes versicolor in Pichia pastoris. Applied Biochemistry and Microbiology, 2014, 50, 140-147.	0.9	26
22	Cloning, overexpression and characterization of a thermostable β-xylosidase from Thermotoga petrophila and cooperated transformation of ginsenoside extract to ginsenoside 20(S)-Rg3 with a β-glucosidase. Bioorganic Chemistry, 2019, 85, 159-167.	4.1	26
23	B-factor-saturation mutagenesis as a strategy to increase the thermostability of α-L-rhamnosidase from Aspergillus terreus. Journal of Biotechnology, 2018, 275, 17-23.	3.8	25
24	Modulating heterologous pathways and optimizing fermentation conditions for biosynthesis of kaempferol and astragalin from naringenin in <i>Escherichia coli</i> . Journal of Industrial Microbiology and Biotechnology, 2019, 46, 171-186.	3.0	25
25	Overexpression of ABCB1 Transporter Confers Resistance to mTOR Inhibitor WYE-354 in Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 1387.	4.1	25
26	Characterization of a novel arabinose-tolerant <i>α</i> - <scp>l-</scp> arabinofuranosidase with high ginsenoside Rc to ginsenoside Rd bioconversion productivity. Journal of Applied Microbiology, 2016, 120, 647-660.	3.1	24
27	Comparison of Two Laccases from Trametes versicolor for Application in the Decolorization of Dyes. Journal of Microbiology and Biotechnology, 2014, 24, 545-555.	2.1	24
28	Overexpression and characterization of CCD4 from Osmanthus fragrans and β-ionone biosynthesis from β-carotene in vitro. Journal of Molecular Catalysis B: Enzymatic, 2016, 134, 105-114.	1.8	23
29	Echinacoside ameliorates alcohol-induced oxidative stress and hepatic steatosis by affecting SREBP1c/FASN pathway via PPARα. Food and Chemical Toxicology, 2021, 148, 111956.	3.6	23
30	Production of a Recombinant Laccase from Pichia pastoris and Biodegradation of Chlorpyrifos in a Laccase/Vanillin System. Journal of Microbiology and Biotechnology, 2013, 23, 864-871.	2.1	23
31	High-level expression of recombinant thermostable β-glucosidase in Escherichia coli by regulating acetic acid. Bioresource Technology, 2017, 241, 795-801.	9.6	22
32	Effective Release of Intracellular Enzymes by Permeating the Cell Membrane with Hydrophobic Deep Eutectic Solvents. ChemBioChem, 2020, 21, 672-680.	2.6	22
33	Production of isoorientin and isovitexin from luteolin and apigenin using coupled catalysis of glycosyltransferase and sucrose synthase. Applied Biochemistry and Biotechnology, 2020, 190, 601-615.	2.9	22
34	Biochemical characterization of a novel hyperthermophilic α-l-rhamnosidase from Thermotoga petrophila and its application in production of icaritin from epimedin C with a thermostable ^{[2} -glucosidase. Process Biochemistry, 2020, 93, 115-124.	3.7	22
35	Molecular Dynamics Analysis of Binding Sites of Epidermal Growth Factor Receptor Kinase Inhibitors. ACS Omega, 2020, 5, 16307-16314.	3.5	22
36	Berberine: A Promising Natural Isoquinoline Alkaloid for the Development of Hypolipidemic Drugs. Current Topics in Medicinal Chemistry, 2020, 20, 2634-2647.	2.1	22

#	Article	IF	CITATIONS
37	Construction of a novel UDP-rhamnose regeneration system by a two-enzyme reaction system and application in glycosylation of flavonoid. Biochemical Engineering Journal, 2018, 139, 33-42.	3.6	20
38	Effects of β-glucosidase and α-rhamnosidase on the Contents of Flavonoids, Ginkgolides, and Aroma Components in Ginkgo Tea Drink. Molecules, 2019, 24, 2009.	3.8	20
39	Expression and characterization of GH3 β-Glucosidase from Aspergillus niger NL-1 with high specific activity, glucose inhibition and solvent tolerance. Microbiology, 2013, 82, 356-363.	1.2	18
40	High-level expression of a novel multifunctional GH3 family β-xylosidase/α-arabinosidase/β-glucosidase from Dictyoglomus turgidum in Escherichia coli. Bioorganic Chemistry, 2021, 111, 104906.	4.1	18
41	Biotransformation of the total flavonoid extract of epimedium into icaritin by two thermostable glycosidases from Dictyoglomus thermophilum DSM3960. Process Biochemistry, 2021, 105, 8-18.	3.7	18
42	The Synergistic Beneficial Effects of Ginkgo Flavonoid and <i>Coriolus versicolor</i> Polysaccharide for Memory Improvements in a Mouse Model of Dementia. Evidence-based Complementary and Alternative Medicine, 2015, 2015, 1-9.	1.2	17
43	Combined Molecular Docking, 3Dâ€ <scp>QSAR</scp> , and Pharmacophore Model: Design of Novel Tubulin Polymerization Inhibitors by Binding to Colchicineâ€binding Site. Chemical Biology and Drug Design, 2015, 86, 731-745.	3.2	17
44	Structures and bioactivities of seven flavonoids from <i>Osmanthus fragrans</i> â€Jinqiu' essential oil extraction residues. Natural Product Research, 2018, 32, 588-591.	1.8	17
45	Synergistic Effects of Ginkgolide B and Protocatechuic Acid on the Treatment of Parkinson's Disease. Molecules, 2020, 25, 3976.	3.8	17
46	Consensus scoring model for the molecular docking study of mTOR kinase inhibitor. Journal of Molecular Graphics and Modelling, 2018, 79, 81-87.	2.4	16
47	A patent review of berberine and its derivatives with various pharmacological activities (2016–2020). Expert Opinion on Therapeutic Patents, 2022, 32, 211-223.	5.0	16
48	Highly Efficient Biotransformation of Astragaloside IV to Cycloastragenol by Sugar-Stimulated ¥ é-Glucosidase and é é-Xylosidase from Dictyoglomus thermophilum. Journal of Microbiology and Biotechnology, 2019, 29, 1882-1893.	2.1	16
49	Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Frontiers in Oncology, 2020, 10, 228.	2.8	15
50	Effects of accelerated aging treatment on the microstructure and mechanics of wood-resin interphase. Holzforschung, 2018, 72, 235-241.	1.9	13
51	Enhancing UDP-Rhamnose Supply for Rhamnosylation of Flavonoids in <i>Escherichia coli</i> by Regulating the Modular Pathway and Improving NADPH Availability. Journal of Agricultural and Food Chemistry, 2020, 68, 9513-9523.	5.2	13
52	Cloning and characterization of the Î ² -xylosidase from Dictyoglomus turgidum for high efficient biotransformation of 10-deacetyl-7-xylosltaxol. Bioorganic Chemistry, 2020, 94, 103357.	4.1	12
53	Cooperated biotransformation of ginsenoside extracts into ginsenoside 20(<i>S</i>)â€Rg3 by three thermostable glycosidases. Journal of Applied Microbiology, 2020, 128, 721-734.	3.1	12
54	Cloning, Overexpression, and Characterization of a Thermostable, Organic Solvent-Tolerant Laccase from <i>Bacillus pumilus</i> ARA and Its Application to Dye Decolorization. ACS Omega, 2021, 6, 9741-9749.	3.5	12

#	Article	IF	CITATIONS
55	Orientin and vitexin production by a one-pot enzymatic cascade of a glycosyltransferase and sucrose synthase. Bioorganic Chemistry, 2021, 112, 104926.	4.1	12
56	Immobilization of Thermostable β-Glucosidase and α-l-Rhamnosidase from Dictyoglomus thermophilum DSM3960 and Their Cooperated Biotransformation of Total Flavonoids Extract from Epimedium into Icaritin. Catalysis Letters, 2021, 151, 2950-2963.	2.6	12
57	Screening and characterization of a GH78 α-l-rhamnosidase from Aspergillus terreus and its application in the bioconversion of icariin to icaritin with recombinant β-glucosidase. Enzyme and Microbial Technology, 2022, 153, 109940.	3.2	12
58	Purification and characterisation of a novel α‣â€rhamnosidase exhibiting transglycosylating activity from <i>Aspergillus oryzae</i> . International Journal of Food Science and Technology, 2017, 52, 2596-2603.	2.7	11
59	Cloning and characterization of enoate reductase with high β-ionone to dihydro-β-ionone bioconversion productivity. BMC Biotechnology, 2018, 18, 26.	3.3	11
60	Highly enhancing the characteristics of immobilized thermostable β-glucosidase by Zn2+. Process Biochemistry, 2018, 66, 89-96.	3.7	10
61	Design, synthesis, and anti-inflammatory activity of caffeoyl salicylate analogs as NO production inhibitors. Fìtoterapìâ, 2018, 129, 25-33.	2.2	10
62	Study on Synergistic Antioxidant Effect of Typical Functional Components of Hydroethanolic Leaf Extract from Ginkgo Biloba In Vitro. Molecules, 2022, 27, 439.	3.8	10
63	Biotransformation of Ginsenosides Re and Rg1 into Rg2 and Rh1 by Thermostable β-Glucosidase from Thermotoga thermarum. Chemistry of Natural Compounds, 2017, 53, 472-477.	0.8	9
64	Predictive QSAR modeling study on berberine derivatives with hypolipidemic activity. Chemical Biology and Drug Design, 2018, 91, 867-873.	3.2	9
65	Synthesis of Isorhamnetin-3-O-Rhamnoside by a Three-Enzyme (Rhamnosyltransferase, Glycine Max) Tj ETQq1 Molecules, 2019, 24, 3042.	1 0.784314 3.8	rgBT /Overlo 9
66	Efficient production of aggregation prone 4-α-glucanotransferase by combined use of molecular chaperones and chemical chaperones in Escherichia coli. Journal of Biotechnology, 2019, 292, 68-75.	3.8	9
67	Co-production of Xylooligosaccharides and Xylose From Poplar Sawdust by Recombinant Endo-1,4-Î2-Xylanase and Î2-Xylosidase Mixture Hydrolysis. Frontiers in Bioengineering and Biotechnology, 2020, 8, 637397.	4.1	9
68	Biochemical Characterization of a Novel Prenyltransferase from <i>Streptomyces</i> sp. NT11 and Development of a Recombinant Strain for the Production of 6-Prenylnaringenin. Journal of Agricultural and Food Chemistry, 2021, 69, 14231-14240.	5.2	9
69	Immobilization of high temperature-resistant GH3 β-glucosidase on a magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8/zeolitic imidazolate framework. Enzyme and Microbial Technology, 2019, 129, 109347.	3.2	8
70	Highly Efficient Biotransformation of Notoginsenoside R1 into Ginsenoside Rg1 by <i>Dictyoglomus thermophilum l²</i> -xylosidase XIn-DT. Journal of Microbiology and Biotechnology, 2022, 32, 447-457.	2.1	8
71	Discovery of 7,9-Disulfatetrahydroberberine as Novel Lipid-Lowering Agents. ACS Omega, 2020, 5, 30836-30848.	3.5	7
72	Discovery and structural optimization of 9-O-phenylsulfonyl-berberines as new lipid-lowering agents. Bioorganic Chemistry, 2022, 121, 105665.	4.1	7

#	Article	IF	CITATIONS
73	One-pot synthesis of dihydro-β-ionone from carotenoids using carotenoid cleavage dioxygenase and enoate reductase. Bioprocess and Biosystems Engineering, 2022, 45, 891-900.	3.4	7
74	Seasonal variation of pheophorbide a and flavonoid in different organs of two Carpinus species and its correlation with immunosuppressive activity. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 654-661.	1.5	6
75	Molecular insights into catalytic specificity of α-L-rhamnosidase from Bacteroides thetaiotaomicron by molecular docking and dynamics. Chemical Physics Letters, 2020, 754, 137695.	2.6	6
76	Discovery of C-9 Modified Berberine Derivatives as Novel Lipid-Lowering Agents. Chemical and Pharmaceutical Bulletin, 2021, 69, 59-66.	1.3	6
77	Isovitexin Inhibits Ginkgolic Acids-Induced Inflammation Through Downregulating SHP2 Activation. Frontiers in Pharmacology, 2021, 12, 630320.	3.5	6
78	Oriented Deep Eutectic Solvents as Efficient Approach for Selective Extraction of Bioactive Saponins from Husks of Xanthoceras sorbifolia Bunge. Antioxidants, 2022, 11, 736.	5.1	6
79	One-step purification and immobilization of thermostable β-glucosidase on Na-Y zeolite based on the linker and its application in the efficient production of baohuoside I from icariin. Bioorganic Chemistry, 2022, 121, 105690.	4.1	6
80	Synthesis and Antitumor Activity of C-3(R) Hydroxy Modified Betulinic Acid Derivatives. Chemistry of Natural Compounds, 2019, 55, 1080-1084.	0.8	5
81	Identification of dihydroorotate dehydrogenase as a protein target of ginkgolic acid by molecular docking and dynamics. Journal of Molecular Structure, 2020, 1220, 128692.	3.6	5
82	Immobilization of GH78 α-L-Rhamnosidase from <i>Thermotoga petrophilea</i> with High-Temperature-Resistant Magnetic Particles Fe ₃ O ₄ -SiO ₂ -NH ₂ -Cellu-ZIF8 and Its Application in the Production of Prunin Form Naringin. Journal of Microbiology and Biotechnology, 2021, 31, 419-428.	2.1	5
83	Biosynthesis of 3'-O-methylisoorientin from luteolin by selecting O-methylation/C-glycosylation motif. Enzyme and Microbial Technology, 2021, 150, 109862.	3.2	5
84	Characterization flavanone 3β-hydroxylase expressed from Populus euphratica in Escherichia coli and its application in dihydroflavonol production. Applied Biochemistry and Microbiology, 2017, 53, 318-324.	0.9	4
85	Improving the Thermostability and pH Stability of Aspergillus niger Xylanase by Site-directed Mutagenesis. Applied Biochemistry and Microbiology, 2019, 55, 136-144.	0.9	4
86	Synergistic Catalysis of Glycosyltransferase and Sucrose Synthase to Produce Isoquercitrin Through Glycosylation of Quercetin. Chemistry of Natural Compounds, 2019, 55, 453-457.	0.8	4
87	Discovery of TGFBR1 (ALK5) as a potential drug target of quercetin glycoside derivatives (QGDs) by reverse molecular docking and molecular dynamics simulation. Biophysical Chemistry, 2022, 281, 106731.	2.8	4
88	Overexpression and characterization of a novel plant carotenoid cleavage dioxygenase 1 from Morus notabilis. Chemistry and Biodiversity, 2021, , .	2.1	4
89	RNA-Seq analysis and comparison of the enzymes involved in ionone synthesis of three cultivars of Osmanthus. Journal of Asian Natural Products Research, 2018, 20, 649-661.	1.4	3
90	Bioassayâ€guided isolation of antiâ€inflammatory constituents from <i>Celtis sinensis</i> leaves. Journal of Food Biochemistry, 2021, 45, e13580.	2.9	3

#	Article	IF	CITATIONS
91	Efficient Production Hyperoside from Quercetin in Escherichia coli Through Increasing UDP-Galactose Supply and Recycling of Resting Cell. Catalysis Letters, 2021, 151, 1202-1211.	2.6	3
92	Cloning and Characterization of a Novel Carotenoid Cleavage Dioxygenase 1 from <i>Helianthus annuus</i> . Chemistry and Biodiversity, 2022, 19, e2100694.	2.1	3
93	Biodegradation of Endocrine Disrupting Chemicals with Laccase Isozymes from Recombinant Pichia pastori. Catalysis Letters, 2022, 152, 2625-2636.	2.6	3
94	Modification to increase the thermostability and catalytic efficiency of α-L-rhamnosidase from Bacteroides thetaiotaomicron and high-level expression. Enzyme and Microbial Technology, 2022, 158, 110040.	3.2	3
95	Optimizing the Desorption Technology of Total Flavonoids of <i>Ginkgo Biloba</i> from Separating Materials of Activated Carbon. ACS Omega, 2021, 6, 35002-35013.	3.5	3
96	Data on thermostable β-glucosidase immobilized by Zn2+. Data in Brief, 2018, 18, 873-876.	1.0	2
97	Structural Optimization of Caffeoyl Salicylate Scaffold as NO Production Inhibitors. Chemical and Pharmaceutical Bulletin, 2019, 67, 1006-1014.	1.3	2
98	Recombinant Laccase Production Optimization in Pichia pastoris by Response Surface Methodology and Its Application in the Biodegradation of Octyl Phenol and 4-Tert-Octylphenol. Catalysis Letters, 2022, 152, 1086-1099.	2.6	2
99	Improvements in xylose stability and thermalstability of GH39 β-xylosidase from Dictyoglomus thermophilum by site-directed mutagenesis and insights into its xylose tolerance mechanism. Enzyme and Microbial Technology, 2021, 151, 109921.	3.2	2
100	Extracts of Waste from Poplar Wood Processing Alleviate Experimental Dextran Sulfate-Induced Colitis by Ameliorating Oxidative Stress, Inhibiting the Th1/Th17 Response and Inducing Apoptosis in Inflammatory Lymphocytes. Antioxidants, 2021, 10, 1684.	5.1	2
101	Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Polysaccharides Suppressed Adipogenesis and Stimulated Lipolysis in HPA-v and 3T3-L1 Adipocytes. International Journal of Medicinal Mushrooms, 2020, 22, 897-908.	1.5	2
102	Consensus scoring model: A novel approach to the study of EGFR kinase inhibitors. Chemical Physics Letters, 2022, 800, 139650.	2.6	2
103	Design, synthesis, and biological activity of 9- <i>O</i> -cinnamoylberberines as novel lipid-lowering agents. Natural Product Research, 2023, 37, 3452-3460.	1.8	1
104	Notice of Retraction: Biodegradation of Papaverine and Harmaline with the Basidiomycetous Phanerochaete chrysosporium. , 2011, , .		0
105	Notice of Retraction: Enzymatic Conversion of 2,4-Dichlophenol by Laccase. , 2011, , .		0
106	Notice of Retraction: Studies on Degradation of the Pesticide of Chlorpyrifos by Phanerochaete chrysosporium. , 2011, , .		0