
Pushp Sheel Shukla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2641461/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ascophyllum nodosum-Based Biostimulants: Sustainable Applications in Agriculture for the Stimulation of Plant Growth, Stress Tolerance, and Disease Management. Frontiers in Plant Science, 2019, 10, 655.	1.7	258
2	Improved Salinity Tolerance of Arachis hypogaea (L.) by the Interaction of Halotolerant Plant-Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation, 2012, 31, 195-206.	2.8	256
3	Bioengineering for Salinity Tolerance in Plants: State of the Art. Molecular Biotechnology, 2013, 54, 102-123.	1.3	220
4	The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biology, 2012, 12, 188.	1.6	147
5	Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB PLANTS, 2018, 10, plx051.	1.2	93
6	Physiological and Transcriptomics Analyses Reveal that Ascophyllum nodosum Extracts Induce Salinity Tolerance in Arabidopsis by Regulating the Expression of Stress Responsive Genes. Journal of Plant Growth Regulation, 2019, 38, 463-478.	2.8	79
7	Ascophyllum nodosum extract mitigates salinity stress in Arabidopsis thaliana by modulating the expression of miRNA involved in stress tolerance and nutrient acquisition. PLoS ONE, 2018, 13, e0206221.	1.1	54
8	A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. Journal of Applied Phycology, 2020, 32, 3561-3584.	1.5	51
9	A Biostimulant Preparation of Brown Seaweed Ascophyllum nodosum Suppresses Powdery Mildew of Strawberry. Plant Pathology Journal, 2019, 35, 406-416.	0.7	46
10	Seaweed-Based Compounds and Products for Sustainable Protection against Plant Pathogens. Marine Drugs, 2021, 19, 59.	2.2	44
11	Overexpression of a novel SbMYB15 from Salicornia brachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco. Planta, 2015, 242, 1291-1308.	1.6	41
12	Molecular characterization of an MYB transcription factor from a succulent halophyte involved in stress tolerance. AoB PLANTS, 2015, 7, plv054.	1.2	35
13	High-frequency in vitro shoot regeneration in Cucumis sativus by inhibition of endogenous auxin. In Vitro Cellular and Developmental Biology - Plant, 2014, 50, 729-737.	0.9	14
14	Ascophyllum nodosum Biostimulant Improves the Growth of Zea mays Grown Under Phosphorus Impoverished Conditions. Frontiers in Plant Science, 2020, 11, 601843.	1.7	14
15	Combination of Ascophyllum nodosum Extract and Humic Acid Improve Early Growth and Reduces Post-Harvest Loss of Lettuce and Spinach. Agriculture (Switzerland), 2019, 9, 240.	1.4	12
16	Extracts of seaweeds used as biostimulants on land and sea crops—an efficacious, phyconomic, circular blue economy: with special reference to Ascophyllum (brown) and Kappaphycus (red) seaweeds. , 2021, , 263-288.		6
17	First Report of Bacterial Leaf Blight of Strawberry Caused by <i>Pantoea ananatis</i> in Nova Scotia, Canada. Plant Disease, 2020, 104, 276-276.	0.7	5
18	Editorial: Biostimulants as an Avenue of Abiotic Stress Tolerance Improvement in Crops. Frontiers in Sustainable Food Systems, 2022, 6, .	1.8	5

#	Article	IF	CITATIONS
19	An alkali-extracted biostimulant prepared from Ascophyllum nodosum alters the susceptibility of Arabidopsis thaliana to the green peach aphid. Journal of Applied Phycology, 2021, 33, 3319-3329.	1.5	4