
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2641452/publications.pdf Version: 2024-02-01

EDCARDO D'ANCELO

#	Article	IF	CITATIONS
1	Plethysmographic assessment of tidal expiratory flow limitation. Respiratory Physiology and Neurobiology, 2022, 296, 103801.	0.7	1
2	Diagnostic Insights from Plethysmographic Alveolar Pressure Assessed during Spontaneous Breathing in COPD Patients. Diagnostics, 2021, 11, 918.	1.3	5
3	Heliox administration in anesthetized rabbits with spontaneous inspiratory flow limitation. Journal of Applied Physiology, 2021, 130, 1496-1509.	1.2	Ο
4	In memoriam Emilio Agostoni. Respiratory Physiology and Neurobiology, 2021, 294, 103772.	0.7	0
5	The development of various forms of lung injury with increasing tidal volume in normal rats. Respiratory Physiology and Neurobiology, 2020, 274, 103369.	0.7	1
6	Tidal expiratory flow limitation induces expiratory looping of the alveolar pressure-flow relation in COPD patients. Journal of Applied Physiology, 2020, 129, 75-83.	1.2	11
7	Standard and viscoelastic mechanical properties of respiratory system compartments in dogs: Effect of volume, posture, and shape. Respiratory Physiology and Neurobiology, 2019, 261, 31-39.	0.7	4
8	Plethysmographic Loops: A Window on the Lung Pathophysiology of COPD Patients. Frontiers in Physiology, 2018, 9, 484.	1.3	12
9	Airway occlusion assessed by single breath N 2 test and lung P-V curve in healthy subjects and COPD patients. Respiratory Physiology and Neurobiology, 2016, 234, 60-68.	0.7	22
10	Friction and morphology of pleural mesothelia. Respiratory Physiology and Neurobiology, 2016, 220, 17-24.	0.7	4
11	Assessment of acute bronchodilator effects from specific airway resistance changes in stable COPD patients. Respiratory Physiology and Neurobiology, 2014, 197, 36-45.	0.7	38
12	Effects of Various Modes of Mechanical Ventilation in Normal Rats. Anesthesiology, 2014, 120, 943-950.	1.3	14
13	Esophageal pressure as an estimate of average pleural pressure with lung or chest distortion in rats. Respiratory Physiology and Neurobiology, 2013, 186, 229-235.	0.7	10
14	Pulmonary Dysfunction in COPD. Pulmonary Medicine, 2013, 2013, 1-2.	0.5	0
15	Plasma membrane disruptions with different modes of injurious mechanical ventilation in normal rat lungs*. Critical Care Medicine, 2012, 40, 869-875.	0.4	14
16	Maintaining end-expiratory transpulmonary pressure prevents worsening of ventilator-induced lung injury caused by chest wall constriction in surfactant-depleted rats*. Critical Care Medicine, 2010, 38, 2358-2364.	0.4	34
17	Motor control of the diaphragm in anesthetized rabbits. Respiratory Physiology and Neurobiology, 2010, 170, 141-149.	0.7	15
18	Clinical Uses of Heliox Mixtures in Chronic Obstructive Pulmonary Disease. Current Respiratory Medicine Reviews, 2009, 5, 168-173.	0.1	0

#	Article	IF	CITATIONS
19	Expiratory flow-limitation and heliox breathing in resting and exercising COPD patients. Respiratory Physiology and Neurobiology, 2009, 169, 291-296.	0.7	17
20	The fall in exhaled nitric oxide with ventilation at low lung volumes in rabbits: An index of small airway injury. Respiratory Physiology and Neurobiology, 2008, 160, 215-223.	0.7	14
21	Pathophysiology of Chronic Obstructive Pulmonary Disease. Current Respiratory Medicine Reviews, 2008, 4, 250-257.	0.1	2
22	Cytokine release, small airway injury, and parenchymal damage during mechanical ventilation in normal open-chest rats. Journal of Applied Physiology, 2008, 104, 41-49.	1.2	50
23	Lung Mechanics in Disease. , 2008, , 100-110.		2
24	Helium–oxygen ventilation in the presence of expiratory flow-limitation: A model study. Respiratory Physiology and Neurobiology, 2007, 157, 326-334.	0.7	18
25	Dependence of lung injury on surface tension during low-volume ventilation in normal open-chest rabbits. Journal of Applied Physiology, 2007, 102, 174-182.	1.2	46
26	Closing volume: a reappraisal (1967–2007). European Journal of Applied Physiology, 2007, 99, 567-583.	1.2	123
27	Effects of mechanical ventilation at low lung volume on respiratory mechanics and nitric oxide exhalation in normal rabbits. Journal of Applied Physiology, 2005, 99, 433-444.	1.2	59
28	Reversibility of Airflow Obstruction by Hypoglossus Nerve Stimulation in Anesthetized Rabbits. American Journal of Respiratory and Critical Care Medicine, 2005, 172, 606-612.	2.5	25
29	Friction and lubrication of pleural tissues. Respiratory Physiology and Neurobiology, 2004, 142, 55-68.	0.7	38
30	Effect of Heliox Breathing on Dynamic Hyperinflation in COPD Patients. Chest, 2004, 125, 2075-2082.	0.4	38
31	Dependence of lung injury on inflation rate during low-volume ventilation in normal open-chest rabbits. Journal of Applied Physiology, 2004, 97, 260-268.	1.2	80
32	Lung-deflating ability of rib cage and abdominal muscles in rabbits. Respiratory Physiology and Neurobiology, 2003, 135, 17-24.	0.7	7
33	Pulmonary Dysfunction in Transfusion-dependent Patients with Thalassemia Major. American Journal of Respiratory and Critical Care Medicine, 2003, 168, 180-184.	2.5	45
34	Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. Journal of Applied Physiology, 2002, 92, 949-956.	1.2	130
35	Effects of abdominal distension on breathing pattern and respiratory mechanics in rabbits. Respiratory Physiology and Neurobiology, 2002, 130, 293-304.	0.7	17
36	Factors influencing the shape of the inspiratory flow. Respiration Physiology, 2001, 126, 211-219.	2.8	2

#	Article	IF	CITATIONS
37	The Effects of CO2on Respiratory Mechanics in Anesthetized Paralyzed Humans. Anesthesiology, 2001, 94, 604-610.	1.3	33
38	Insertional action of the abdominal muscles in rabbits and dogs. Respiration Physiology, 1996, 104, 147-157.	2.8	8
39	Electrical and mechanical output of the inspiratory muscles in anesthetized dogs. Respiration Physiology, 1990, 79, 177-193.	2.8	8
40	Verification of a model for the mechanisms controlling expiratory duration in rabbits under various conditons. Respiration Physiology, 1985, 59, 239-264.	2.8	10
41	Effects of body temperature, passive limb motion and level of anesthesia on the activity of the inspiratory muscles. Respiration Physiology, 1984, 56, 105-129.	2.8	8
42	Inspiratory muscle activity during rebreathing in intact and vagotomized rabbits. Respiration Physiology, 1982, 47, 193-218.	2.8	22
43	Effects of thoracic dorsal rhizotomy or vagotomy on inspiratory muscle activity at various levels of chemical drive. Respiration Physiology, 1982, 50, 221-238.	2.8	8
44	Cranio-caudal rib cage distortion with increasing inspiratory airflow in man. Respiration Physiology, 1981, 44, 215-237.	2.8	19
45	Mechanisms controlling inspiration studied be electrical vagal stimulations in rabbits. Respiration Physiology, 1979, 38, 185-202.	2.8	10
46	Effects of uneven elastic loads on breathing pattern of anesthetized and conscious men. Respiration Physiology, 1977, 30, 153-168.	2.8	12
47	Effects of single breath lung inflation on the pattern of subsequent breaths. Respiration Physiology, 1977, 31, 1-18.	2.8	10
48	The effect of limb movements on the regulation of depth and rate of breathing. Respiration Physiology, 1976, 27, 33-52.	2.8	27
49	Immediate response to expiratory threshold load. Respiration Physiology, 1975, 25, 269-284.	2.8	11
50	Tonic vagal influences on inspiratory duration. Respiration Physiology, 1975, 24, 287-302.	2.8	60
51	Vertical gradients of pleural and transpulmonary pressure with liquid-filled lungs. Respiration Physiology, 1975, 23, 159-173.	2.8	11
52	Stress-strain relationships during uniform and nona uniform expansion of isolated lungs. Respiration Physiology, 1975, 23, 87-107.	2.8	27
53	Effect of histamine on the vertical gradient of transpulmonary pressure. Respiration Physiology, 1974, 20, 331-335.	2.8	5
54	Distribution of transpulmonary pressure and chest wall shape. Respiration Physiology, 1974, 22, 335-344.	2.8	16

#	Article	IF	CITATIONS
55	Continuous recording of pleural surface pressure at various sites. Respiration Physiology, 1973, 19, 356-368.	2.8	40
56	Local alveolar size and transpulmonary pressure in situ and in isolated lungs. Respiration Physiology, 1972, 14, 251-266.	2.8	59
57	Partition of factors contributing to the vertical gradient of transpulmonary pressure. Respiration Physiology, 1971, 12, 90-101.	2.8	18
58	Topography of pleural surface pressure during simulation of gravity effect on abdomen. Respiration Physiology, 1971, 12, 102-109.	2.8	25
59	Comparative features of the transpulmonary pressure. Respiration Physiology, 1970, 11, 76-83.	2.8	38
60	Thickness and pressure of the pleural liquid at various heights and with various hydrothoraces. Respiration Physiology, 1969, 6, 330-342.	2.8	49
61	The recoil of the most dependent part of the lung. Respiration Physiology, 1968, 5, 379-384.	2.8	11