Maria Rosaria Domenici

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/264115/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adenosine A2A receptors and brain injury: Broad spectrum of neuroprotection, multifaceted actions and "fine tuning―modulation. Progress in Neurobiology, 2007, 83, 310-331.	2.8	232
2	Blockade of Striatal Adenosine A _{2A} Receptor Reduces, through a Presynaptic Mechanism, Quinolinic Acid-Induced Excitotoxicity: Possible Relevance to Neuroprotective Interventions in Neurodegenerative Diseases of the Striatum. Journal of Neuroscience, 2002, 22, 1967-1975.	1.7	209
3	Behavioral and electrophysiological effects of the adenosine A2A receptor antagonist SCH 58261 in R6/2 Huntington's disease mice. Neurobiology of Disease, 2007, 28, 197-205.	2.1	67
4	A Critical Evaluation of Adenosine A2A Receptors as Potentially "Druggable" Targets in Huntingtons Disease. Current Pharmaceutical Design, 2008, 14, 1500-1511.	0.9	63
5	Astrocytes contribute to neuronal impairment in ?A toxicity increasing apoptosis in rat hippocampal neurons. Glia, 2001, 34, 68-72.	2.5	58
6	Adenosine A2A receptor blockade differentially influences excitotoxic mechanisms at pre- and postsynaptic sites in the rat striatum. Journal of Neuroscience Research, 2004, 77, 100-107.	1.3	50
7	Adenosine A2A receptor as potential therapeutic target in neuropsychiatric disorders. Pharmacological Research, 2019, 147, 104338.	3.1	49
8	Adenosine A _{2A} receptors enable the synaptic effects of cannabinoid CB ₁ receptors in the rodent striatum. Journal of Neurochemistry, 2009, 110, 1921-1930.	2.1	46
9	Long-lasting beneficial effects of central serotonin receptor 7 stimulation in female mice modeling Rett syndrome. Frontiers in Behavioral Neuroscience, 2015, 9, 86.	1.0	44
10	Reduced hippocampal CA1 Ca2+-induced long-term potentiation is associated with age-dependent impairment of spatial learning. Brain Research, 1995, 686, 107-110.	1.1	42
11	Unbalance of CB1 receptors expressed in GABAergic and glutamatergic neurons in a transgenic mouse model of Huntington's disease. Neurobiology of Disease, 2012, 45, 983-991.	2.1	41
12	Modulation of Rho GTPases rescues brain mitochondrial dysfunction, cognitive deficits and aberrant synaptic plasticity in female mice modeling Rett syndrome. European Neuropsychopharmacology, 2015, 25, 889-901.	0.3	41
13	Opposite effects of the A2A receptor agonist CCS21680 in the striatum of Huntington's disease versus wild-type mice. Neuroscience Letters, 2007, 417, 78-83.	1.0	39
14	Maternal Exposure to Low Levels of Corticosterone during Lactation Protects the Adult Offspring against Ischemic Brain Damage. Journal of Neuroscience, 2007, 27, 7041-7046.	1.7	37
15	Neuroprotective effects of the mGlu5R antagonist MPEP towards quinolinic acidâ€induced striatal toxicity: involvement of preâ€and postâ€synaptic mechanisms and lack of direct NMDA blocking activity. Journal of Neurochemistry, 2004, 89, 1479-1489.	2.1	35
16	The Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease. Journal of Caffeine and Adenosine Research, 2018, 8, 43-58.	0.8	35
17	<scp>BDNF</scp> prevents <scp>NMDA</scp> â€induced toxicity in models of Huntington's disease: the effects are genotype specific and adenosine A _{2A} receptor is involved. Journal of Neurochemistry, 2013, 125, 225-235.	2.1	31
18	Striatal adenosine–cannabinoid receptor interactions in rats overâ€expressing adenosine A _{2A} receptors. Journal of Neurochemistry, 2016, 136, 907-917.	2.1	29

#	Article	IF	CITATIONS
19	Adenosine A2A Receptor Antagonism and Neuroprotection: Mechanisms, Lights, and Shadows. Critical Reviews in Neurobiology, 2004, 16, 99-106.	3.3	26
20	Remodeling of striatal NMDA receptors by chronic A2A receptor blockade in Huntington's disease mice. Neurobiology of Disease, 2010, 37, 99-105.	2.1	25
21	Metabotropic glutamate receptor 5 (mGluR5)-mediated phosphoinositide hydrolysis and NMDA-potentiating effects are blunted in the striatum of aged rats: a possible additional mechanism in striatal senescence. European Journal of Neuroscience, 2003, 17, 2047-2055.	1.2	24
22	Chronic treatment with the mGlu5R antagonist MPEP reduces the functional effects of the mGlu5R agonist CHPG in the striatum of 6-hydroxydopamine-lesioned rats: Possible relevance to the effects of mGlu5R blockade in Parkinson's disease. Journal of Neuroscience Research, 2005, 80, 646-654.	1.3	23
23	Influence of CCS 21680, a selective adenosine A2A receptor agonist, on NMDA receptor function and expression in the brain of Huntington's disease mice. Brain Research, 2010, 1323, 184-191.	1.1	21
24	Cocaine-Induced Changes of Synaptic Transmission in the Striatum are Modulated by Adenosine A2A Receptors and Involve the Tyrosine Phosphatase STEP. Neuropsychopharmacology, 2014, 39, 569-578.	2.8	18
25	SCH 58261 differentially influences quinolinic acid-induced effects in striatal and in hippocampal slices. European Journal of Pharmacology, 2002, 450, 253-257.	1.7	16
26	Age-related decline in the functional response of striatal group I mGlu receptors. NeuroReport, 2000, 11, 3033-3038.	0.6	15
27	Neuronal adenosine A2A receptor overexpression is neuroprotective towards 3-nitropropionic acid-induced striatal toxicity: a rat model of Huntington's disease. Purinergic Signalling, 2018, 14, 235-243.	1.1	12
28	Protective actions of 21-aminosteroids and MK-801 on hypoxia-induced electrophysiological changes in rat hippocampal slices. European Journal of Pharmacology, 1993, 233, 291-293.	1.7	11
29	Felbamate displays in vitro antiepileptic effects as a broad spectrum excitatory amino acid receptor antagonist. European Journal of Pharmacology, 1994, 271, 259-263.	1.7	11
30	Quinolinic acid modulates the activity of src family kinases in rat striatum: in vivo and in vitro studies. Journal of Neurochemistry, 2006, 97, 1327-1336.	2.1	11
31	Systemic depletion of histone macroH2A1.1 boosts hippocampal synaptic plasticity and social behavior in mice. FASEB Journal, 2021, 35, e21793.	0.2	11
32	L-NAME reverses quinolinic acid-induced toxicity in rat corticostriatal slices: Involvement ofsrc family kinases. Journal of Neuroscience Research, 2007, 85, 2770-2777.	1.3	9
33	The activity of the Striatalâ€enriched protein tyrosine phosphatase in neuronal cells is modulated by adenosine A 2A receptor. Journal of Neurochemistry, 2020, 152, 284-298.	2.1	8
34	Activation of Phosphotyrosine-Mediated Signaling Pathways in the Cortex and Spinal Cord of SOD1 ^{G93A} , a Mouse Model of Familial Amyotrophic Lateral Sclerosis. Neural Plasticity, 2018, 2018, 1-10.	1.0	4
35	Insight into the Role of the STriatal-Enriched Protein Tyrosine Phosphatase (STEP) in A2A Receptor-Mediated Effects in the Central Nervous System. Frontiers in Pharmacology, 2021, 12, 647742.	1.6	4
36	What Is the Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease?. , 2018, , 281-308.		2

What Is the Role of Adenosine Tone and Adenosine Receptors in Huntington's Disease?. , 2018, , 281-308. 36

#	Article	IF	CITATIONS
37	In vitro hippocampal dentate frequency potentiation induction as model to detect electrophysiological correlates of some cognitive impairments in striatallt-lesioned rats. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1996, 20, 999-1010.	2.5	0