
CÃ;tia F Lourenço

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2640614/publications.pdf Version: 2024-02-01

CÃ:TIA E LOUDENÃSO

#	Article	IF	CITATIONS
1	Neurovascular coupling in hippocampus is mediated via diffusion by neuronal-derived nitric oxide. Free Radical Biology and Medicine, 2014, 73, 421-429.	2.9	80
2	In Vivo Realâ€Time Measurement of Nitric Oxide in Anesthetized Rat Brain. Methods in Enzymology, 2008, 441, 351-367.	1.0	69
3	Neurovascular-neuroenergetic coupling axis in the brain: master regulation by nitric oxide and consequences in aging and neurodegeneration. Free Radical Biology and Medicine, 2017, 108, 668-682.	2.9	66
4	Cyclosporine A-induced nitration of tyrosine 34 MnSOD in endothelial cells: role of mitochondrial superoxide. Cardiovascular Research, 2010, 87, 356-365.	3.8	61
5	Neurovascular uncoupling in the triple transgenic model of Alzheimer's disease: Impaired cerebral blood flow response to neuronal-derived nitric oxide signaling. Experimental Neurology, 2017, 291, 36-43.	4.1	61
6	Dietary flavonoids with a catechol structure increase \hat{I}_{\pm} -tocopherol in rats and protect the vitamin from oxidation in vitro. Journal of Lipid Research, 2006, 47, 2718-2725.	4.2	59
7	A comparative study of carbon fiber-based microelectrodes for the measurement of nitric oxide in brain tissue. Biosensors and Bioelectronics, 2008, 24, 704-709.	10.1	52
8	Nitric Oxide Inactivation Mechanisms in the Brain: Role in Bioenergetics and Neurodegeneration. International Journal of Cell Biology, 2012, 2012, 1-13.	2.5	36
9	Nitric oxide signaling in the brain: translation of dynamics into respiration control and neurovascular coupling. Annals of the New York Academy of Sciences, 2012, 1259, 10-18.	3.8	36
10	Age-Dependent Impairment of Neurovascular and Neurometabolic Coupling in the Hippocampus. Frontiers in Physiology, 2018, 9, 913.	2.8	36
11	LDL Isolated from Plasma-Loaded Red Wine Procyanidins Resist Lipid Oxidation and Tocopherol Depletion. Journal of Agricultural and Food Chemistry, 2008, 56, 3798-3804.	5.2	33
12	The pattern of glutamate-induced nitric oxide dynamics in vivo and its correlation with nNOS expression in rat hippocampus, cerebral cortex and striatum. Brain Research, 2014, 1554, 1-11.	2.2	32
13	Evidence for a pathway that facilitates nitric oxide diffusion in the brain. Neurochemistry International, 2011, 59, 90-96.	3.8	31
14	Age-dependent changes in the glutamate-nitric oxide pathway inÂthe hippocampus of the triple transgenic model of Alzheimer's disease: implications for neurometabolic regulation. Neurobiology of Aging, 2016, 46, 84-95.	3.1	30
15	Ceramic-Based Multisite Platinum Microelectrode Arrays: Morphological Characteristics and Electrochemical Performance for Extracellular Oxygen Measurements in Brain Tissue. Analytical Chemistry, 2017, 89, 1674-1683.	6.5	29
16	Neurometabolic and electrophysiological changes during cortical spreading depolarization: multimodal approach based on a lactate-glucose dual microbiosensor arrays. Scientific Reports, 2017, 7, 6764.	3.3	29
17	Effects of natural prenylated flavones in the phenotypical ER (+) MCF-7 and ER (â^') MDA-MB-231 human breast cancer cells. Toxicology Letters, 2006, 164, 24-36.	0.8	28
18	In vivo modulation of nitric oxide concentration dynamics upon glutamatergic neuronal activation in the hippocampus. Hippocampus, 2011, 21, 622-630.	1.9	28

CÃitia F Lourenço

#	Article	IF	CITATIONS
19	Microelectrode array biosensor for high-resolution measurements of extracellular glucose in the brain. Sensors and Actuators B: Chemical, 2016, 237, 298-307.	7.8	26
20	Nitric Oxide Pathways in Neurovascular Coupling Under Normal and Stress Conditions in the Brain: Strategies to Rescue Aberrant Coupling and Improve Cerebral Blood Flow. Frontiers in Physiology, 2021, 12, 729201.	2.8	26
21	Neurovascular and neurometabolic derailment in aging and Alzheimer's disease. Frontiers in Aging Neuroscience, 2015, 7, 103.	3.4	24
22	Brain Nitric Oxide Inactivation Is Governed by the Vasculature. Antioxidants and Redox Signaling, 2011, 14, 1011-1021.	5.4	22
23	Combined in Vivo Amperometric Oximetry and Electrophysiology in a Single Sensor: A Tool for Epilepsy Research. Analytical Chemistry, 2017, 89, 12383-12390.	6.5	22
24	The bioactivity of neuronal-derived nitric oxide in aging and neurodegeneration: Switching signaling to degeneration. Free Radical Biology and Medicine, 2021, 162, 500-513.	2.9	20
25	Age-Associated Changes of Nitric Oxide Concentration Dynamics in the Central Nervous System of Fisher 344 Rats. Cellular and Molecular Neurobiology, 2015, 35, 33-44.	3.3	19
26	Concurrent measurements of neurochemical and electrophysiological activity with microelectrode arrays: New perspectives for constant potential amperometry. Current Opinion in Electrochemistry, 2018, 12, 129-140.	4.8	18
27	Platinized carbon fiber-based glucose microbiosensor designed for metabolic studies in brain slices. Bioelectrochemistry, 2019, 130, 107325.	4.6	18
28	Coupling of ascorbate and nitric oxide dynamics in vivo in the rat hippocampus upon glutamatergic neuronal stimulation: A novel functional interplay. Brain Research Bulletin, 2015, 114, 13-19.	3.0	15
29	A High Fat/Cholesterol Diet Recapitulates Some Alzheimer's Disease-Like Features in Mice: Focus on Hippocampal Mitochondrial Dysfunction. Journal of Alzheimer's Disease, 2021, 82, 1619-1633.	2.6	15
30	Analysis of respiratory capacity in brain tissue preparations: high-resolution respirometry for intact hippocampal slices. Analytical Biochemistry, 2018, 551, 43-50.	2.4	11
31	The Peculiar Facets of Nitric Oxide as a Cellular Messenger: From Disease-Associated Signaling to the Regulation of Brain Bioenergetics and Neurovascular Coupling. Neurochemical Research, 2021, 46, 64-76.	3.3	11
32	Self-mixing microprobe for monitoring microvascular perfusion in rat brain. Medical and Biological Engineering and Computing, 2013, 51, 103-112.	2.8	6
33	Neurovascular Coupling Mediated by Neuronal Derived-Nitric Oxide: Mechanisms in Health and Dysfunction with Impact on Aging and Alzheimer's Disease. , 2016, , 289-308.		2
34	Microelectrode Sensor for Real-Time Measurements of Nitrite in the Living Brain, in the Presence of Ascorbate. Biosensors, 2021, 11, 277.	4.7	2
35	Neurovascular coupling mediated by neuronal nitric oxide in hippocampus and the redox cycle of ascorbate and nitrite. Free Radical Biology and Medicine, 2018, 128, S132.	2.9	0
36	Concurrent recording of neurometabolic changes and local field potential in the central nervous system of awake-behaving rodent models of epilepsy. Annals of Medicine, 2024, 51, 24-24.	3.8	0

#	Article	IF	CITATIONS
37	Disruption of neurovascular coupling in a rodent model of vascular dementia – can we rescue it by nitrate supplementation?. Free Radical Biology and Medicine, 2021, 165, 51.	2.9	0