Nilo Riva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2640584/publications.pdf

Version: 2024-02-01

102	3,996	34	58
papers	citations	h-index	g-index
102	102	102	5340
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Phosphorylated TDP-43 aggregates in peripheral motor nerves of patients with amyotrophic lateral sclerosis. Brain, 2022, 145, 276-284.	3.7	22
2	The hypometabolic state: a good predictor of a better prognosis in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 41-47.	0.9	11
3	A preliminary comparison between ECAS and ALS-CBS in classifying cognitive–behavioural phenotypes in a cohort of non-demented amyotrophic lateral sclerosis patients. Journal of Neurology, 2022, 269, 1899-1904.	1.8	5
4	Amyotrophic Lateral Sclerosis–Frontotemporal Dementia. Neurology, 2022, 98, .	1.5	15
5	Primary Lateral Sclerosis Presenting With Focal Onset Spreading Through Contiguous Neuroanatomic Regions. Neurology, 2022, , 10.1212/WNL.0000000000011.	1.5	1
6	Neurofilament light chain as a biological marker for amyotrophic lateral sclerosis: a meta-analysis study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 446-457.	1.1	8
7	Corneal and Epidermal Nerve Quantification in Chemotherapy Induced Peripheral Neuropathy. Frontiers in Medicine, 2022, 9, 832344.	1.2	7
8	Integrated evaluation of a panel of neurochemical biomarkers to optimize diagnosis and prognosis in amyotrophic lateral sclerosis. European Journal of Neurology, 2022, 29, 1930-1939.	1.7	25
9	NEK1 Variants in a Cohort of Italian Patients With Amyotrophic Lateral Sclerosis. Frontiers in Neuroscience, 2022, 16, 833051.	1.4	9
10	Resting state functional brain networks associated with emotion processing in frontotemporal lobar degeneration. Molecular Psychiatry, 2022, 27, 4809-4821.	4.1	4
11	Current application of neurofilaments in amyotrophic lateral sclerosis and future perspectives. Neural Regeneration Research, 2021, 16, 1985.	1.6	17
12	Serum naturally occurring anti-TDP-43 auto-antibodies are increased in amyotrophic lateral sclerosis. Scientific Reports, 2021, 11, 1978.	1.6	11
13	The unfolded protein response in amyotrophic later sclerosis: results of a phase 2 trial. Brain, 2021, 144, 2635-2647.	3.7	33
14	Hemiplegic-type ALS shows a strong correlation between upper, lower motor neuron degeneration and pTDP-43 pathology. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 917-917.	0.9	0
15	Structural MRI Signatures in Genetic Presentations of the Frontotemporal Dementia/Motor Neuron Disease Spectrum. Neurology, 2021, 97, e1594-e1607.	1.5	19
16	Normal structure and pathological features in peripheral neuropathies. Journal of the Peripheral Nervous System, 2021, 26, S11-S20.	1.4	1
17	ALS Cognitive Behavioral Screen (ALS-CBS): normative values for the Italian population and clinical usability. Neurological Sciences, 2020, 41, 835-841.	0.9	18
18	Diet, Microbiota and Brain Health: Unraveling the Network Intersecting Metabolism and Neurodegeneration. International Journal of Molecular Sciences, 2020, 21, 7471.	1.8	32

#	Article	IF	CITATIONS
19	Clinical features and outcomes of the flail arm and flail leg and pure lower motor neuron MND variants: a multicentre Italian study. Journal of Neurology, Neurosurgery and Psychiatry, 2020, 91, 1001-1003.	0.9	14
20	Retromer stabilization results in neuroprotection in a model of Amyotrophic Lateral Sclerosis. Nature Communications, 2020, 11, 3848.	5.8	44
21	Structural and functional brain connectome in motor neuron diseases. Neurology, 2020, 95, e2552-e2564.	1.5	34
22	Progression of brain functional connectivity and frontal cognitive dysfunction in ALS. NeuroImage: Clinical, 2020, 28, 102509.	1.4	19
23	Burden of Rare Variants in ALS and Axonal Hereditary Neuropathy Genes Influence Survival in ALS: Insights from a Next Generation Sequencing Study of an Italian ALS Cohort. International Journal of Molecular Sciences, 2020, 21, 3346.	1.8	11
24	Post-infectious Guillain–Barré syndrome related to SARS-CoV-2 infection: a case report. Journal of Neurology, 2020, 267, 2492-2494.	1.8	44
25	Temporal variant of frontotemporal dementia in C9orf72 repeat expansion carriers: two case studies. Brain Imaging and Behavior, 2020, 14, 336-345.	1.1	3
26	Structural MRI outcomes and predictors of disease progression in amyotrophic lateral sclerosis. NeuroImage: Clinical, 2020, 27, 102315.	1.4	14
27	Urinary neopterin, a new marker of the neuroinflammatory status in amyotrophic lateral sclerosis. Journal of Neurology, 2020, 267, 3609-3616.	1.8	10
28	Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2020, 21, 485-495.	1.1	32
29	Serum phosphorylated neurofilament heavy-chain levels reflect phenotypic heterogeneity and are an independent predictor of survival in motor neuron disease. Journal of Neurology, 2020, 267, 2272-2280.	1.8	26
30	X-ray phase contrast tomography for the investigation of amyotrophic lateral sclerosis. Journal of Synchrotron Radiation, 2020, 27, 1042-1048.	1.0	11
31	Limitations in daily activities and general perception of quality of life: Long term followâ€up in patients with antiâ€myelinâ€glycoprotein antibody polyneuropathy. Journal of the Peripheral Nervous System, 2019, 24, 276-282.	1.4	5
32	The Peripheral Nervous System in Amyotrophic Lateral Sclerosis: Opportunities for Translational Research. Frontiers in Neuroscience, 2019, 13, 601.	1.4	28
33	Expanding the spectrum of genes responsible for hereditary motor neuropathies. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 1171-1179.	0.9	30
34	Proteostasis and ALS: protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS). BMJ Open, 2019, 9, e028486.	0.8	44
35	Concurrence of NMOSD and ALS in a patient with hexanucleotide repeat expansions of C9orf72. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 449-452.	1.1	1
36	Brain MRI shows white matter sparing in Kennedy's disease and slowâ€progressing lower motor neuron disease. Human Brain Mapping, 2019, 40, 3102-3112.	1.9	12

#	Article	IF	CITATIONS
37	Coexistence of variants in TBK1 and in other ALS-related genes elucidates an oligogenic model of pathogenesis in sporadic ALS. Neurobiology of Aging, 2019, 84, 239.e9-239.e14.	1.5	21
38	Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. Annals of Neurology, 2019, 85, 470-481.	2.8	118
39	Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Neurology, The, 2019, 18, 155-164.	4.9	63
40	Heterogeneous brain FDG-PET metabolic patterns in patients with C9orf72 mutation. Neurological Sciences, 2019, 40, 515-521.	0.9	19
41	Riluzole Selective Antioxidant Effects in Cell Models Expressing Amyotrophic Lateral Sclerosis Endophenotypes. Clinical Psychopharmacology and Neuroscience, 2019, 17, 438-442.	0.9	13
42	Trauma and amyotrophic lateral sclerosis: a european population-based case-control study from the EURALS consortium. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2018, 19, 118-125.	1.1	26
43	Fast progressive lower motor neuron disease is an ALS variant: A two-centre tract of interest-based MRI data analysis. NeuroImage: Clinical, 2018, 17, 145-152.	1.4	35
44	Functioning and quality of life in patients with neuropathy associated with anti-MAG antibodies. Journal of Neurology, 2018, 265, 2927-2933.	1.8	12
45	Cortico-efferent tract involvement in primary lateral sclerosis and amyotrophic lateral sclerosis: A two-centre tract of interest-based DTI analysis. NeuroImage: Clinical, 2018, 20, 1062-1069.	1.4	15
46	Serum irisin is upregulated in patients affected by amyotrophic lateral sclerosis and correlates with functional and metabolic status. Journal of Neurology, 2018, 265, 3001-3008.	1.8	20
47	Counteracting roles of MHCI and CD8+ T cells in the peripheral and central nervous system of ALS SOD1G93A mice. Molecular Neurodegeneration, 2018, 13, 42.	4.4	40
48	Structural and functional brain signatures of C9orf72 in motor neuron disease. Neurobiology of Aging, 2017, 57, 206-219.	1.5	54
49	A longitudinal DTI and histological study of the spinal cord reveals early pathological alterations in G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Experimental Neurology, 2017, 293, 43-52.	2.0	19
50	<i>TBK1</i> mutations in Italian patients with amyotrophic lateral sclerosis: genetic and functional characterisation. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 869-875.	0.9	38
51	Multimodal structural MRI in the diagnosis of motor neuron diseases. Neurolmage: Clinical, 2017, 16, 240-247.	1.4	55
52	Protein misfolding, amyotrophic lateral sclerosis and guanabenz: protocol for a phase II RCT with futility design (ProMISe trial). BMJ Open, 2017, 7, e015434.	0.8	14
53	Factors predicting survival in ALS: a multicenter Italian study. Journal of Neurology, 2017, 264, 54-63.	1.8	96
54	Immune response in peripheral axons delays disease progression in SOD1G93A mice. Journal of Neuroinflammation, 2016, 13, 261.	3.1	63

#	Article	IF	CITATIONS
55	Structural brain correlates of cognitive and behavioral impairment in <scp>MND</scp> . Human Brain Mapping, 2016, 37, 1614-1626.	1.9	84
56	Unraveling gene expression profiles in peripheral motor nerve from amyotrophic lateral sclerosis patients: insights into pathogenesis. Scientific Reports, 2016, 6, 39297.	1.6	24
57	Recent advances in amyotrophic lateral sclerosis. Journal of Neurology, 2016, 263, 1241-1254.	1.8	67
58	TBK1 is associated with ALS and ALS-FTD in Sardinian patients. Neurobiology of Aging, 2016, 43, 180.e1-180.e5.	1.5	40
59	ATNX2 is not a regulatory gene in Italian amyotrophic lateral sclerosis patients with C9ORF72 GGGCCC expansion. Neurobiology of Aging, 2016, 39, 218.e5-218.e8.	1.5	6
60	Brain MR Imaging in Patients with Lower Motor Neuron–Predominant Disease. Radiology, 2016, 280, 545-556.	3.6	32
61	A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 570-579.	0.9	138
62	MR Imaging of Brachial Plexus and Limb-Girdle Muscles in Patients with Amyotrophic Lateral Sclerosis. Radiology, 2016, 279, 553-561.	3.6	32
63	Novel <scp>FUS</scp> mutations identified through molecular screening in a large cohort of familial and sporadic amyotrophic lateral sclerosis. European Journal of Neurology, 2015, 22, 1474-1481.	1.7	23
64	Extrapyramidal and cognitive signs in amyotrophic lateral sclerosis: A population based cross-sectional study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 324-330.	1.1	26
65	Erythropoietin in amyotrophic lateral sclerosis: a multicentre, randomised, double blind, placebo controlled, phase III study. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 879-886.	0.9	32
66	The MITOS system predicts long-term survival in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2015, 86, 1180-1185.	0.9	42
67	MRI signatures of the frontotemporal lobar degeneration continuum. Human Brain Mapping, 2015, 36, 2602-2614.	1.9	39
68	Corneal confocal microscopy reveals trigeminal small sensory fiber neuropathy in amyotrophic lateral sclerosis. Frontiers in Aging Neuroscience, 2014, 6, 278.	1.7	66
69	Balance exercise in patients with chronic sensory ataxic neuropathy: a pilot study. Journal of the Peripheral Nervous System, 2014, 19, 145-151.	1.4	11
70	Defining Peripheral Nervous System Dysfunction in the SOD-1 ^{G93A} Transgenic Rat Model of Amyotrophic Lateral Sclerosis. Journal of Neuropathology and Experimental Neurology, 2014, 73, 658-670.	0.9	18
71	Increased expression of Myosin binding protein H in the skeletal muscle of amyotrophic lateral sclerosis patients. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2014, 1842, 99-106.	1.8	49
72	Resting state functional connectivity alterations in primary lateral sclerosis. Neurobiology of Aging, 2014, 35, 916-925.	1.5	41

#	Article	IF	CITATIONS
73	Physical activity and amyotrophic lateral sclerosis: A European populationâ€based case–control study. Annals of Neurology, 2014, 75, 708-716.	2.8	79
74	Peripheral nerve morphogenesis induced by scaffold micropatterning. Biomaterials, 2014, 35, 4035-4045.	5.7	39
75	Longâ€term survival in amyotrophic lateral sclerosis: A populationâ€based study. Annals of Neurology, 2014, 75, 287-297.	2.8	141
76	Intrahemispheric and interhemispheric structural network abnormalities in PLS and ALS. Human Brain Mapping, 2014, 35, 1710-1722.	1.9	76
77	Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiology of Aging, 2013, 34, 419-427.	1.5	133
78	Extramotor Damage Is Associated with Cognition in Primary Lateral Sclerosis Patients. PLoS ONE, 2013, 8, e82017.	1.1	33
79	Different Frontal Involvement in ALS and PLS Revealed by Stroop Event-Related Potentials and Reaction Times. Frontiers in Aging Neuroscience, 2013, 5, 82.	1.7	8
80	Cortical activation to voluntary movement in amyotrophic lateral sclerosis is related to corticospinal damage: Electrophysiological evidence. Clinical Neurophysiology, 2012, 123, 1586-1592.	0.7	25
81	The brachial plexus branches to the pectoral muscles in adult rats: morphological aspects and morphometric normative data. Frontiers in Neuroanatomy, 2012, 6, 41.	0.9	8
82	Trauma and amyotrophic lateral sclerosis: a case–control study from a populationâ€based registry. European Journal of Neurology, 2012, 19, 1509-1517.	1.7	63
83	The Cortical Signature of Amyotrophic Lateral Sclerosis. PLoS ONE, 2012, 7, e42816.	1.1	108
84	Chronic motor axonal neuropathy. Journal of the Peripheral Nervous System, 2011, 16, 341-346.	1.4	17
85	Compensatory movement-related recruitment in amyotrophic lateral sclerosis patients with dominant upper motor neuron signs: An EEG source analysis study. Brain Research, 2011, 1425, 37-46.	1.1	13
86	Motor nerve biopsy: Clinical usefulness and histopathological criteria. Annals of Neurology, 2011, 69, 197-201.	2.8	38
87	Coffee and Amyotrophic Lateral Sclerosis: A Possible Preventive Role. American Journal of Epidemiology, 2011, 174, 1002-1008.	1.6	50
88	The Topography of Brain Microstructural Damage in Amyotrophic Lateral Sclerosis Assessed Using Diffusion Tensor MR Imaging. American Journal of Neuroradiology, 2011, 32, 1307-1314.	1.2	54
89	Cognitive Functions and White Matter Tract Damage in Amyotrophic Lateral Sclerosis: A Diffusion Tensor Tractography Study. American Journal of Neuroradiology, 2011, 32, 1866-1872.	1.2	87
90	Sensorimotor Functional Connectivity Changes in Amyotrophic Lateral Sclerosis. Cerebral Cortex, 2011, 21, 2291-2298.	1.6	102

#	Article	IF	CITATIONS
91	Subcutaneous immunoglobulin therapy for the treatment of multifocal motor neuropathy: a case report. Neurological Sciences, 2010, 31, 829-831.	0.9	32
92	Analyzing Histopathological Features of Rare Charcot-Marie-Tooth Neuropathies to Unravel Their Pathogenesis. Archives of Neurology, 2010, 67, 1498-505.	4.9	48
93	Health-related quality-of-life improvements in CIDP with immune globulin IV 10%. Neurology, 2009, 72, 1337-1344.	1.5	57
94	Acute myelopathy selectively involving lumbar anterior horns following intranasal insufflation of ecstasy and heroin. BMJ Case Reports, 2009, 2009, bcr0820080669-bcr0820080669.	0.2	4
95	Churg Strauss syndrome presenting as acute neuropathy resembling Guillain Barré syndrome. Journal of Neurology, 2008, 255, 1843-1844.	1.8	17
96	Intravenous immune globulin (10% caprylate-chromatography purified) for the treatment of chronic inflammatory demyelinating polyradiculoneuropathy (ICE study): a randomised placebo-controlled trial. Lancet Neurology, The, 2008, 7, 136-144.	4.9	582
97	The extracellular matrix affects axonal regeneration in peripheral neuropathies. Neurology, 2008, 71, 322-331.	1.5	32
98	LYMPHOMATOUS NEUROPATHY IN COLD AGGLUTININ DISEASE. Neurology, 2008, 70, 1715-1716.	1.5	3
99	Acute myelopathy selectively involving lumbar anterior horns following intranasal insufflation of ecstasy and heroin. Journal of Neurology, Neurosurgery and Psychiatry, 2007, 78, 908-909.	0.9	19
100	Motor complications of Parkinson's disease. Neurological Sciences, 2003, 24, s27-s29.	0.9	12
101	Neuromuscular weakness. , 0, , 317-331.		0
102	Profiling morphologic MRI features of motor neuron disease caused by TARDBP mutations. Frontiers in Neurology, 0, 13 , .	1.1	5