
Fumihiro Sagane

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2640053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetic Behavior of the Anion Intercalation/De-intercalation into the Graphite Electrode in Organic Solution. Electrochemistry, 2022, 90, 037001-037001.	1.4	5
2	The Effect of the Solvation Ability Towards Mg ²⁺ -ion on the Kinetic Behavior of Mg ₃ Bi ₂ Electrode. Journal of the Electrochemical Society, 2022, 169, 030517.	2.9	6
3	The Effect of Mg Morphology on the Irregular Behavior of the Electrochemical Quartz Crystal Microbalance in Mg[N(CF ₃ SO ₂) ₂] ₂ / Solutions. Electrochemistry. 2022, 90, 057003-057003.	/glyme	0
4	Electrochemical N(CF ₃ SO ₂) ₂ ^{â^`} Intercalation/de-intercalation into Graphite Electrode as the Positive Electrode Reaction for Mg Secondary Batteries. Electrochemistry, 2021, 89, 12-18.	1.4	2
5	The Effect of the Coordination Ability on the Mg Plating/Stripping Behavior in Mg(N(CF ₃ SO ₂) ₂) ₂ /Glyme Based Electrolytes. Journal of the Electrochemical Society, 2021, 168, 120528.	2.9	2
6	The Effect of Cyclic Ethers on Mg Plating/Stripping Reaction in Ionic Liquid Electrolytes. Journal of the Electrochemical Society, 2019, 166, A5054-A5058.	2.9	9
7	The Effect of the Cyclic Ether Additives to the Ethereal Electrolyte Solutions for Mg Secondary Battery. Electrochemistry, 2016, 84, 76-78.	1.4	13
8	Dielectric Modification of 5Vâ€Class Cathodes for Highâ€Voltage Allâ€Solidâ€State Lithium Batteries. Advanced Energy Materials, 2014, 4, 1301416.	19.5	136
9	Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. Journal of Power Sources, 2013, 233, 34-42.	7.8	91
10	Sodium-ion transfer at the interface between ceramic and organic electrolytes. Journal of Power Sources, 2010, 195, 7466-7470.	7.8	43
11	Li+ and Na+ transfer through interfaces between inorganic solid electrolytes and polymer or liquid electrolytes. Journal of Power Sources, 2005, 146, 749-752.	7.8	136
12	Lithium-Ion Transfer at the Interface Between Lithium-Ion Conductive Ceramic Electrolyte and Liquid Electrolyte-A Key to Enhancing the Rate Capability of Lithium-Ion Batteries. Journal of the Electrochemical Society, 2005, 152, A2151.	2.9	219
13	Lithium Ion Transfer at the Interface between Lithium-Ion-Conductive Solid Crystalline Electrolyte and Polymer Electrolyte. Journal of the Electrochemical Society, 2004, 151, A1950.	2.9	124