
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2640010/publications.pdf Version: 2024-02-01

LIUS M CHTIEDDEZ

#	Article	IF	CITATIONS
1	Vesicle Fusion as a Target Process for the Action of Sphingosine and Its Derived Drugs. International Journal of Molecular Sciences, 2022, 23, 1086.	4.1	2
2	Multiple sclerosis drug FTY-720 toxicity is mediated by the heterotypic fusion of organelles in neuroendocrine cells. Scientific Reports, 2019, 9, 18471.	3.3	2
3	Studies of the Secretory Machinery Dynamics by Total Internal Reflection Fluorescence Microscopy in Bovine Adrenal Chromaffin Cells. Methods in Molecular Biology, 2019, 1860, 379-389.	0.9	0
4	The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective. Pflugers Archiv European Journal of Physiology, 2018, 470, 181-186.	2.8	21
5	Multiple Mechanisms Driving F-actin-Dependent Transport of Organelles to and From Secretory Sites in Bovine Chromaffin Cells. Frontiers in Cellular Neuroscience, 2018, 12, 344.	3.7	6
6	Emerging evidence for the modulation of exocytosis by signalling lipids. FEBS Letters, 2018, 592, 3493-3503.	2.8	12
7	Modeling the influence of co-localized intracellular calcium stores on the secretory response of bovine chromaffin cells. Computers in Biology and Medicine, 2018, 100, 165-175.	7.0	3
8	Understanding the Role of Mitochondria Distribution in Calcium Dynamics and Secretion in Bovine Chromaffin Cells. Contributions in Mathematical and Computational Sciences, 2017, , 107-117.	0.3	1
9	Sphingomimetic multiple sclerosis drug FTY720 activates vesicular synaptobrevin and augments neuroendocrine secretion. Scientific Reports, 2017, 7, 5958.	3.3	13
10	The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells. Frontiers in Cellular Neuroscience, 2017, 11, 135.	3.7	19
11	Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends in Neurosciences, 2016, 39, 605-613.	8.6	54
12	Fâ€actin cytoskeleton and the fate of organelles in chromaffin cells. Journal of Neurochemistry, 2016, 137, 860-866.	3.9	5
13	The distribution of mitochondria and endoplasmic reticulum in relation with secretory sites in chromaffin cells. Journal of Cell Science, 2014, 127, 5105-14.	2.0	34
14	Role of Protease-Activated Receptor 2 in Lung Injury Development During Acute Pancreatitis in Rats. Pancreas, 2014, 43, 895-902.	1.1	4
15	A theoretical study of factors influencing calcium-secretion couplingin a presynaptic active zone model. Mathematical Biosciences and Engineering, 2014, 11, 1027-1043.	1.9	0
16	Cortical F-actin affects the localization and dynamics of SNAP-25 membrane clusters in chromaffin cells. International Journal of Biochemistry and Cell Biology, 2013, 45, 583-592.	2.8	17
17	Lipid Metabolites Enhance Secretion Acting on SNARE Microdomains and Altering the Extent and Kinetics of Single Release Events in Bovine Adrenal Chromaffin Cells. PLoS ONE, 2013, 8, e75845.	2.5	18
18	New Insights into the Role of the Cortical Cytoskeleton in Exocytosis from Neuroendocrine Cells. International Review of Cell and Molecular Biology, 2012, 295, 109-137.	3.2	48

#	Article	IF	CITATIONS
19	Neurite extensions in chromaffin cells: study of the influence of the cytoskeletal structure on calcium dynamics and secretion. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2012, 6, 61-69.	1.1	0
20	The F-Actin Cortex in Chromaffin Granule Dynamics and Fusion: a Minireview. Journal of Molecular Neuroscience, 2012, 48, 323-327.	2.3	17
21	F-Actin–Myosin II Inhibitors Affect Chromaffin Granule Plasma Membrane Distance and Fusion Kinetics by Retraction of the Cytoskeletal Cortex. Journal of Molecular Neuroscience, 2012, 48, 328-338.	2.3	26
22	Modeling F-actin cortex influence on the secretory properties of neuroendocrine cells. Communicative and Integrative Biology, 2011, 4, 413-415.	1.4	3
23	The F-actin cortical network is a major factor influencing the organization of the secretory machinery in chromaffin cells. Journal of Cell Science, 2011, 124, 727-734.	2.0	38
24	P2X7 Receptors Trigger ATP Exocytosis and Modify Secretory Vesicle Dynamics in Neuroblastoma Cells. Journal of Biological Chemistry, 2011, 286, 11370-11381.	3.4	48
25	Calcium entry through slow-inactivating L-type calcium channels preferentially triggers endocytosis rather than exocytosis in bovine chromaffin cells. American Journal of Physiology - Cell Physiology, 2011, 301, C86-C98.	4.6	16
26	Modeling F-actin cortex influence on the secretory properties of neuroendocrine cells. Communicative and Integrative Biology, 2011, 4, 413-5.	1.4	2
27	Association of SNAREs and Calcium Channels with the Borders of Cytoskeletal Cages Organizes the Secretory Machinery in Chromaffin Cells. Cellular and Molecular Neurobiology, 2010, 30, 1315-1319.	3.3	15
28	t‣NARE cluster organization and dynamics in chromaffin cells. Journal of Neurochemistry, 2010, 114, 1550-1556.	3.9	9
29	αâ€5ynuclein sequesters arachidonic acid to modulate SNAREâ€mediated exocytosis. EMBO Reports, 2010, 11, 528-533.	4.5	98
30	The organization of the secretory machinery in chromaffin cells as a major factor in modeling exocytosis. HFSP Journal, 2010, 4, 85-92.	2.5	17
31	Pancreatic and pulmonary mast cells activation during experimental acute pancreatitis. World Journal of Gastroenterology, 2010, 16, 3411.	3.3	28
32	Simulation of cytoskeleton influence on spatial Ca2+ dynamics in neuroendocrine cells. BMC Neuroscience, 2009, 10, .	1.9	0
33	Vesicle Motion and Fusion are Altered in Chromaffin Cells with Increased SNARE Cluster Dynamics. Traffic, 2009, 10, 172-185.	2.7	24
34	Sphingosine Facilitates SNARE Complex Assembly and Activates Synaptic Vesicle Exocytosis. Neuron, 2009, 62, 683-694.	8.1	136
35	Cytoskeletal control of vesicle transport and exocytosis in chromaffin cells. Acta Physiologica, 2008, 192, 165-172.	3.8	119
36	A low nicotine concentration augments vesicle motion and exocytosis triggered by K+ depolarisation of chromaffin cells. European Journal of Pharmacology, 2008, 598, 81-86.	3.5	10

#	Article	IF	CITATIONS
37	Myosin II Contributes to Fusion Pore Expansion during Exocytosis. Journal of Biological Chemistry, 2008, 283, 10949-10957.	3.4	88
38	Vesicle movements are governed by the size and dynamics of F-actin cytoskeletal structures in bovine chromaffin cells. Neuroscience, 2007, 146, 659-669.	2.3	58
39	Glycogen synthase kinase 3 activation is essential for the snake phospholipase A2 neurotoxin-induced secretion in chromaffin cells. European Journal of Neuroscience, 2007, 25, 2341-2348.	2.6	6
40	Tight coupling of the t-SNARE and calcium channel microdomains in adrenomedullary slices and not in cultured chromaffin cells. Cell Calcium, 2007, 41, 547-558.	2.4	36
41	Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. Journal of Molecular Neuroscience, 2006, 30, 153-156.	2.3	20
42	The cysteine-rich with EGF-Like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. Journal of Neurochemistry, 2005, 95, 1585-1596.	3.9	27
43	Real-time dynamics of the F-actin cytoskeleton during secretion from chromaffin cells. Journal of Cell Science, 2005, 118, 2871-2880.	2.0	86
44	Dual Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2005, 280, 27062-27068.	3.4	89
45	Small peptides patterned after the Nâ€ŧerminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis. Journal of Neurochemistry, 2004, 88, 124-135.	3.9	39
46	New Roles of Myosin II during Vesicle Transport and Fusion in Chromaffin Cells. Journal of Biological Chemistry, 2004, 279, 27450-27457.	3.4	128
47	Taipoxin induces Fâ€actin fragmentation and enhances release of catecholamines in bovine chromaffin cells. Journal of Neurochemistry, 2003, 85, 329-337.	3.9	36
48	Differential participation of actin- and tubulin-based vesicle transport systems during secretion in bovine chromaffin cells. European Journal of Neuroscience, 2003, 18, 733-742.	2.6	51
49	Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library. Biochemical Journal, 2003, 375, 159-166.	3.7	23
50	Modifications in the C Terminus of the Synaptosome-associated Protein of 25 kDa (SNAP-25) and in the Complementary Region of Synaptobrevin Affect the Final Steps of Exocytosis. Journal of Biological Chemistry, 2002, 277, 9904-9910.	3.4	51
51	The role of myosin in vesicle transport during bovine chromaffin cell secretion. Biochemical Journal, 2002, 368, 405-413.	3.7	39
52	A synthetic hexapeptide (Argireline) with antiwrinkle activity. International Journal of Cosmetic Science, 2002, 24, 303-310.	2.6	137
53	Temperature and PMA affect different phases of exocytosis in bovine chromaffin cells. European Journal of Neuroscience, 2001, 13, 1380-1386.	2.6	27
54	Co-localization of vesicles and P/Q Ca2+-channels explains the preferential distribution of exocytotic active zones in neurites emitted by bovine chromaffin cells. European Journal of Cell Biology, 2001, 80, 358-365.	3.6	15

#	Article	IF	CITATIONS
55	The F-actin cytoskeleton modulates slow secretory components rather than readily releasable vesicle pools in bovine chromaffin cells. Neuroscience, 2000, 98, 605-614.	2.3	43
56	A single amino acid near the C terminus of the synaptosomeassociated protein of 25 kDa (SNAP-25) is essential for exocytosis in chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 7256-7261.	7.1	87
57	Preferential localization of exocytotic active zones in the terminals of neurite-emitting chromaffin cells. European Journal of Cell Biology, 1998, 76, 274-278.	3.6	23
58	Dual effects of botulinum neurotoxin A on the secretory stages of chromaffin cells. European Journal of Neuroscience, 1998, 10, 3369-3378.	2.6	42
59	The 26-mer peptide released from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking. FEBS Letters, 1998, 435, 84-88.	2.8	43
60	A Peptide That Mimics the C-terminal Sequence of SNAP-25 Inhibits Secretory Vesicle Docking in Chromaffin Cells. Journal of Biological Chemistry, 1997, 272, 2634-2639.	3.4	97
61	The role of nicotinic receptors and calcium channels in mipafox induced inhibition of catecholamine release in bovine chromaffin cells. Environmental Toxicology and Pharmacology, 1996, 1, 241-247.	4.0	4
62	Role of syntaxin in mouse pancreatic beta cells. Diabetologia, 1995, 38, 860-863.	6.3	65
63	α-Bungarotoxin-sensitive Nicotinic Receptors on Bovine Chromaffin Cells: Molecular Cloning, Functional Expression and Alternative Splicing of the α7 Subunit. European Journal of Neuroscience, 1995, 7, 647-655.	2.6	101
64	Anti-syntaxin Antibodies Inhibit Calcium-Dependent Catecholamine Secretion from Permeabilized Chromaffin Cells. Biochemical and Biophysical Research Communications, 1995, 206, 1-7.	2.1	46
65	The low-affinity dihydropyridine receptor and Na+/Ca2+ exchanger are associated in adrenal medullary mitochondria. Biochemical Pharmacology, 1995, 50, 879-883.	4.4	4
66	A peptide that mimics the carboxy-terminal domain of SNAP-25 blocks Ca2+-dependent exocytosis in chromaffin cells. FEBS Letters, 1995, 372, 39-43.	2.8	76
67	Calyculin A blocks bovine chromaffin cell calcium channels independently of phosphatase inhibition. Neuroscience Letters, 1994, 178, 55-58.	2.1	4
68	The α1-Subunit of Skeletal Muscle L-Type Ca Channels Is the Key Target for Regulation by A-Kinase and Protein Phosphatase-1C. Biochemical and Biophysical Research Communications, 1994, 198, 166-173.	2.1	33
69	Protein Kinase C-Mediated Regulation of L-Type Ca Channels from Skeletal Muscle Requires Phosphorylation of the α1 Subunit. Biochemical and Biophysical Research Communications, 1994, 202, 857-865.	2.1	22
70	Ruthenium red inhibits selectively chromaffin cell calcium channels. Biochemical Pharmacology, 1994, 47, 225-231.	4.4	28
71	Solubilization, characterization and photoaffinity labeling of the mitochondrial dihydropyridine receptor from bovine adrenal medulla. International Journal of Biochemistry & Cell Biology, 1993, 25, 1909-1915.	0.5	0
72	Naphthalenesulfonamide derivatives ML9 and W7 inhibit catecholamine secretion in intact and permeabilized chromaffin cells. Neurochemical Research, 1993, 18, 317-323.	3.3	22

#	Article	IF	CITATIONS
73	Separate Binding and Functional Sites for ? co-Conotoxin and Nitrendipine Suggest Two Types of Calcium Channels in Bovine Chromaffin Cells. Journal of Neurochemistry, 1989, 53, 1050-1056.	3.9	69
74	A Two-Dimensional Electrophoresis Study of Phosphorylation and Dephosphorylation of Chromaffin Cell Proteins in Response to a Secretory Stimulus. Journal of Neurochemistry, 1988, 51, 1023-1030.	3.9	28