Kinan Alhallak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639637/publications.pdf

Version: 2024-02-01

932766 752256 34 442 10 20 citations g-index h-index papers 34 34 34 559 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Liposomal phytohemagglutinin: In vivo Tâ€cell activator as a novel panâ€cancer immunotherapy. Journal of Cellular and Molecular Medicine, 2022, 26, 940-944.	1.6	7
2	A Novel Innovation and Entrepreneurship (I&E) Training Program for Biomedical Research Trainees. Academic Medicine, 2022, 97, 1335-1340.	0.8	2
3	Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1483-1494.	0.4	37
4	Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy. Leukemia, 2021, 35, 2346-2357.	3.3	28
5	3D tissue engineered plasma cultures support leukemic proliferation and induces drug resistance. Leukemia and Lymphoma, 2021, 62, 1-9.	0.6	5
6	Bispecific T Cell Engagers for the Treatment of Multiple Myeloma: Achievements and Challenges. Cancers, 2021, 13, 2853.	1.7	9
7	Nanoparticle T cell engagers for the treatment of acute myeloid leukemia. Oncotarget, 2021, 12, 1878-1885.	0.8	8
8	A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma. Scientific Reports, 2021, 11, 19343.	1.6	6
9	P-079: IL10R inhibition reprograms tumor-associated macrophages and reverses drug resistance in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2021, 21, S82.	0.2	3
10	3D Tissue-Engineered Bone Marrow Culture Predicts Patient Response to Drugs in Multiple Myeloma. Blood, 2021, 138, 2690-2690.	0.6	0
11	CXCR4-targeted PET imaging using ⁶⁴ Cu-AMD3100 for detection of Waldenström Macroglobulinemia. Cancer Biology and Therapy, 2020, 21, 52-60.	1.5	6
12	Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nature Communications, 2020, 11, 6037.	5.8	51
13	Targeting CD47 as a Novel Immunotherapy for Multiple Myeloma. Cancers, 2020, 12, 305.	1.7	56
14	Biomaterials for cancer immunotherapy. , 2020, , 499-526.		5
15	Abstract PR06: Targeting CD47 as a novel immunotherapy for multiple myeloma. , 2020, , .		O
16	Abstract B01: Nanoparticle multispecific T-cell engagers for the treatment of multiple myeloma. , 2020, , .		1
17	Inhibition of HIF-1a By PX-478 Normalizes Blood Vessels, Improves Drug Delivery and Suppresses Progression and Dissemination in Multiple Myeloma. Blood, 2020, 136, 3-3.	0.6	3
18	Thermal Sensitive Liposomes Improve Delivery of Boronated Agents for Boron Neutron Capture Therapy. Pharmaceutical Research, 2019, 36, 144.	1.7	26

#	Article	IF	CITATIONS
19	Inhibition of CD47 as a Novel Cancer Immunotherapy for Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e153-e154.	0.2	O
20	Nanoparticle Multi-Specific T cell Engagers for the Treatment of Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e156.	0.2	0
21	Endothelial Progenitor Cells as Drug Delivery Trojan Horses for Theranostic Use in Multiple Myeloma. Clinical Lymphoma, Myeloma and Leukemia, 2019, 19, e95.	0.2	O
22	Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. Journal of Controlled Release, 2018, 270, 158-176.	4.8	49
23	Rapid quantification of mitochondrial fractal dimension in individual cells. Biomedical Optics Express, 2018, 9, 5269.	1.5	9
24	A Radiosensitizing Inhibitor of HIF-1 alters the Optical Redox State of Human Lung Cancer Cells In Vitro. Scientific Reports, 2018, 8, 8815.	1.6	18
25	Quantitative diffuse reflectance spectroscopy of short-term changes in tumor oxygenation after radiation in a matched model of radiation resistance. Biomedical Optics Express, 2018, 9, 3794.	1.5	15
26	Overcoming Drug Resistance in Myeloma By Synchronized Delivery of Therapeutic and Bone Marrow Disrupting Agents By Nanoparticles Targeting Tumor-Associated Endothelium. Blood, 2018, 132, 1931-1931.	0.6	0
27	Terahertz imaging of freshly excised breast cancer using mouse model. , 2017, , .		3
28	Optical imaging and spectroscopy of microenvironmental changes associated with radiation resistance in tumors. Proceedings of SPIE, 2017, , .	0.8	0
29	Optical imaging of radiation-induced metabolic changes in radiation-sensitive and resistant cancer cells. Journal of Biomedical Optics, 2017, 22, 060502.	1.4	19
30	Quantitative Diffuse Optical Spectroscopy of Short-term Reoxygenation Kinetics in Radiation-Resistant and Sensitive Tumors. , 2017, , .		0
31	Optical Metabolic Imaging of TWIST Inhibition in 4T1 Breast Cancer Cells. , 2017, , .		0
32	Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Biomedical Optics Express, 2016, 7, 4364.	1.5	76
33	Optical Imaging of Cancer Cell Metabolism in Murine Metastatic Breast Cancer. , 2016, , .		0
34	Abstract 1673: Optical metabolic imaging of response to radiation in radiation-sensitive and resistant lung cancer cells., 2016,,.		0