
Alex F Bokov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639613/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Patient Engagement and Attitudes Toward Using the Electronic Medical Record for Medical Research: The 2015 Greater Plains Collaborative Health and Medical Research Family Survey. JMIR Research Protocols, 2019, 8, e11148.	1.0	1
2	Estimate risk difference and number needed to treat in survival analysis. Annals of Translational Medicine, 2018, 6, 120-120.	1.7	18
3	A System for an Accountable Data Analysis Process in R. R Journal, 2018, 10, 6.	1.8	14
4	A System for an Accountable Data Analysis Process in R. R Journal, 2018, 10, 6-21.	1.8	7
5	Using Prevalence Patterns to Discover Un-mapped Flowsheet Data in an Electronic Health Record Data Warehouse. , 2017, , .		0
6	Biologically relevant simulations for validating risk models under small-sample conditions. , 2017, , .		3
7	DLK-1, SEK-3 and PMK-3 Are Required for the Life Extension Induced by Mitochondrial Bioenergetic Disruption in C. elegans. PLoS Genetics, 2016, 12, e1006133.	3.5	52
8	Liver specific expression of Cu/ZnSOD extends the lifespan of Sod1 null mice. Mechanisms of Ageing and Development, 2016, 154, 1-8.	4.6	18
9	Denormalize and Delimit: How Not to Make Data Extraction for Analysis More Complex Than Necessary. Procedia Computer Science, 2016, 80, 1033-1041.	2.0	3
10	Mitochondrial metabolites extend lifespan. Aging Cell, 2016, 15, 336-348.	6.7	52
11	Rapamycin Increases Mortality in <i>db/db</i> Mice, a Mouse Model of Type 2 Diabetes. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 850-857.	3.6	57
12	Rapamycin improves motor function, reduces 4-hydroxynonenal adducted protein in brain, and attenuates synaptic injury in a mouse model of synucleinopathy. Pathobiology of Aging & Age Related Diseases, 2015, 5, 28743.	1.1	51
13	Mice Fed Rapamycin Have an Increase in Lifespan Associated with Major Changes in the Liver Transcriptome. PLoS ONE, 2014, 9, e83988.	2.5	132
14	Rapamycin Extends Life and Health in C57BL/6 Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2014, 69A, 119-130.	3.6	250
15	Negative Elongation Factor Controls Energy Homeostasis in Cardiomyocytes. Cell Reports, 2014, 7, 79-85.	6.4	36
16	Combined treatment of rapamycin and dietary restriction has a larger effect on the transcriptome and metabolome of liver. Aging Cell, 2014, 13, 311-319.	6.7	49
17	Short-term rapamycin treatment in mice has few effects on the transcriptome of white adipose tissue compared to dietary restriction. Mechanisms of Ageing and Development, 2014, 140, 23-29.	4.6	16
18	Decreased <i>in vitro</i> Mitochondrial Function is Associated with Enhanced Brain Metabolism, Blood Flow, and Memory in Surfl-Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1605-1611.	4.3	35

Alex F Βοκον

#	Article	IF	CITATIONS
19	Dietary restriction attenuates the accelerated aging phenotype of Sod1â^'/â^' mice. Free Radical Biology and Medicine, 2013, 60, 300-306.	2.9	32
20	Rapamycin extends life span of Rb1+/â^' mice by inhibiting neuroendocrine tumors. Aging, 2013, 5, 100-110.	3.1	80
21	Probing the Relationship Between Insulin Sensitivity and Longevity Using Genetically Modified Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 1332-1338.	3.6	27
22	Dietary restriction but not rapamycin extends disease onset and survival of the H46R/H48Q mouse model of ALS. Neurobiology of Aging, 2012, 33, 1829-1832.	3.1	48
23	Effects of diet on synaptic vesicle release in dynactin complex mutants: a mechanism for improved vitality during motor disease. Aging Cell, 2012, 11, 418-427.	6.7	11
24	Rapamycin selectively alters serum chemistry in diabetic mice. Pathobiology of Aging & Age Related Diseases, 2012, 2, 15896.	1.1	4
25	Profiling the Anaerobic Response of C. elegans Using GC-MS. PLoS ONE, 2012, 7, e46140.	2.5	33
26	Does Reduced IGF-1R Signaling in Igf1r+/â^' Mice Alter Aging?. PLoS ONE, 2011, 6, e26891.	2.5	130
27	Stress kinases: Altered in fibroblasts and liver of dwarf mice. Experimental Gerontology, 2011, 46, 210.	2.8	0
28	Thioredoxin 1 Overexpression Extends Mainly the Earlier Part of Life Span in Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 1286-1299.	3.6	71
29	PGCâ€1α protects neurons and alters disease progression in an amyotrophic lateral sclerosis mouse model. Muscle and Nerve, 2011, 44, 947-956.	2.2	65
30	Hepatic response to oxidative injury in longâ€lived Ames dwarf mice. FASEB Journal, 2011, 25, 398-408.	0.5	29
31	Can Rodent Longevity Studies be Both Short and Powerful?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 279-286.	3.6	2
32	Early Postnatal Administration of Growth Hormone Increases Tuberoinfundibular Dopaminergic Neuron Numbers in Ames Dwarf Mice. Endocrinology, 2010, 151, 3277-3285.	2.8	5
33	CBP gene transfer increases BDNF levels and ameliorates learning and memory deficits in a mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22687-22692.	7.1	223
34	Detection and Quantification of Protein Disulfides in Biological Tissues. Methods in Enzymology, 2010, 473, 161-177.	1.0	9
35	The Effect Of Gonadectomy And Estradiol On Sensitivity To Oxidative Stress. Endocrine Research, 2009, 34, 43-58.	1.2	27
36	Lack of methionine sulfoxide reductase A in mice increases sensitivity to oxidative stress but does not diminish life span. FASEB Journal, 2009, 23, 3601-3608.	0.5	121

Alex F Βοκον

#	Article	IF	CITATIONS
37	Long-Lived Ames Dwarf Mice Are Resistant to Chemical Stressors. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 819-827.	3.6	75
38	Mice Deficient in Both Mn Superoxide Dismutase and Glutathione Peroxidase-1 Have Increased Oxidative Damage and a Greater Incidence of Pathology but No Reduction in Longevity. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1212-1220.	3.6	172
39	The overexpression of major antioxidant enzymes does not extend the lifespan of mice. Aging Cell, 2009, 8, 73-75.	6.7	291
40	Is the oxidative stress theory of aging dead?. Biochimica Et Biophysica Acta - General Subjects, 2009, 1790, 1005-1014.	2.4	502
41	The role of oxidative damage and stress in aging. Mechanisms of Ageing and Development, 2004, 125, 811-826.	4.6	528