
James T Morris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639445/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Spatiotemporal Mapping of Salt Marshes in the Intertidal Zone of China during 1985–2019. Journal of Remote Sensing, 2022, 2022, .	6.7	20
2	Biomass allocation of tidal freshwater marsh species in response to natural and manipulated hydroperiod in coastal deltaic floodplains. Estuarine, Coastal and Shelf Science, 2022, 268, 107784.	2.1	2
3	Can Coastal Habitats Rise to the Challenge? Resilience of Estuarine Habitats, Carbon Accumulation, and Economic Value to Sea-Level Rise in a Puget Sound Estuary. Estuaries and Coasts, 2022, 45, 2293-2309.	2.2	6
4	How Plants Influence Resilience of Salt Marsh and Mangrove Wetlands to Sea-Level Rise. Estuaries and Coasts, 2021, 44, 883-898.	2.2	83
5	Ecogeomorphology of Salt Marshes. , 2021, , .		0
6	Coastal Wetland Resilience, Accelerated Seaâ€Level Rise, and the Importance of Timescale. AGU Advances, 2021, 2, e2020AV000334.	5.4	46
7	Marsh Equilibrium Theory. , 2021, , 157-177.		6
8	RGB Indices and Canopy Height Modelling for Mapping Tidal Marsh Biomass from a Small Unmanned Aerial System. Remote Sensing, 2021, 13, 3406.	4.0	8
9	Beneficial Use Decision Support for Wetlands: Case Study for Mobile Bay, Alabama. Journal of Waterway, Port, Coastal and Ocean Engineering, 2021, 147, .	1.2	2
10	Past, present, and future nuisance flooding on the Charleston peninsula. PLoS ONE, 2020, 15, e0238770.	2.5	10
11	Tidal and Hurricane Impacts on Saltmarshes in the Northeastern Coastal and Barrier Network: Theory and Empirical Results. Estuaries and Coasts, 2020, 43, 1658-1671.	2.2	10
12	Identifying marsh dieback events from Landsat image series (1998–2018) with an Autoencoder in the NIWB estuary, South Carolina. International Journal of Digital Earth, 2020, 13, 1467-1483.	3.9	10
13	Coastal Erosion and Land Loss: Causes and Impacts. Coastal Research Library, 2019, , 137-150.	0.4	2
14	Supporting <i>Spartina</i> : Interdisciplinary perspective shows <i>Spartina</i> as a distinct solid genus. Ecology, 2019, 100, e02863.	3.2	39
15	Estimating Aboveground Biomass and Its Spatial Distribution in Coastal Wetlands Utilizing Planet Multispectral Imagery. Remote Sensing, 2019, 11, 2020.	4.0	27
16	Tidal and Meteorological Influences on the Growth of Invasive Spartina alterniflora: Evidence from UAV Remote Sensing. Remote Sensing, 2019, 11, 1208.	4.0	46
17	Short-term effect of simulated salt marsh restoration by sand-amendment on sediment bacterial communities. PLoS ONE, 2019, 14, e0215767.	2.5	11
18	Changes in poreâ€water chemistry and methane emission following the invasion of <i>Spartina alterniflora</i> into an oliogohaline marsh. Limnology and Oceanography, 2018, 63, 384-396.	3.1	36

JAMES T MORRIS

#	Article	IF	CITATIONS
19	Modeling impacts of sea-level rise, oil price, and management strategy on the costs of sustaining Mississippi delta marshes with hydraulic dredging. Science of the Total Environment, 2018, 618, 1547-1559.	8.0	17
20	Uncertainty in United States coastal wetland greenhouse gas inventorying. Environmental Research Letters, 2018, 13, 115005.	5.2	40
21	Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise. PLoS ONE, 2018, 13, e0205176.	2.5	77
22	Global DNA cytosine methylation variation in Spartina alterniflora at North Inlet, SC. PLoS ONE, 2018, 13, e0203230.	2.5	0
23	Lateral Marsh Edge Erosion as a Source of Sediments for Vertical Marsh Accretion. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 2444-2465.	3.0	104
24	Accuracy and Precision of Tidal Wetland Soil Carbon Mapping in the Conterminous United States. Scientific Reports, 2018, 8, 9478.	3.3	80
25	Regulation of salt marsh mosquito populations by the 18.6â€yr lunarâ€nodal cycle. Ecology, 2017, 98, 2059-2068.	3.2	5
26	Impacts of Fertilization and Tidal Inundation on Elevation Change in Microtidal, Low Relief Salt Marshes. Estuaries and Coasts, 2017, 40, 1677-1687.	2.2	28
27	Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Frontiers in Marine Science, 2017, 4, .	2.5	85
28	Mapping salt marsh dieback and condition in South Carolina's North Inlet-Winyah Bay National Estuarine Research Reserve using remote sensing. AIMS Environmental Science, 2017, 4, 677-689.	1.4	12
29	Coastal wetland response to seaâ€level rise in a fluvial estuarine system. Earth's Future, 2016, 4, 483-497.	6.3	71
30	Forecasting tidal marsh elevation and habitat change through fusion of Earth observations and a process model. Ecosphere, 2016, 7, e01582.	2.2	14
31	Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state. Earth's Future, 2016, 4, 110-121.	6.3	215
32	A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Ecological Modelling, 2016, 327, 29-43.	2.5	85
33	Global environmental change and the nature of aboveground net primary productivity responses: insights from long-term experiments. Oecologia, 2015, 177, 935-947.	2.0	48
34	Nutrient Effects on Belowground Organic Matter in a Minerogenic Salt Marsh, North Inlet, SC. Estuaries and Coasts, 2015, 38, 1838-1853.	2.2	30
35	Ulva additions alter soil biogeochemistry and negatively impact Spartina alterniflora growth. Marine Ecology - Progress Series, 2015, 532, 59-72.	1.9	21
36	Modeling Tidal Marsh Distribution with Sea-Level Rise: Evaluating the Role of Vegetation, Sediment, and Upland Habitat in Marsh Resiliency. PLoS ONE, 2014, 9, e88760.	2.5	156

JAMES T MORRIS

#	Article	IF	CITATIONS
37	The Influence of Nutrients on the Coastal Wetlands of the Mississippi Delta. Estuaries of the World, 2014, , 111-123.	0.1	8
38	Brinson Review: Perspectives on the Influence of Nutrients on the Sustainability of Coastal Wetlands. Wetlands, 2013, 33, 975-988.	1.5	78
39	Marsh macrophyte responses to inundation anticipate impacts of sea-level rise and indicate ongoing drowning of North Carolina marshes. Marine Biology, 2013, 160, 181-194.	1.5	89
40	Sea-Level Rise Impact on a Salt Marsh System of the Lower St. Johns River. Journal of Waterway, Port, Coastal and Ocean Engineering, 2013, 139, 118-125.	1.2	35
41	Salt Marsh Primary Production and Its Responses to Relative Sea Level and Nutrients in Estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA. Oceanography, 2013, 26, 78-84.	1.0	150
42	Hydrologic variability in a salt marsh: Assessing the links between drought and acute marsh dieback. Estuarine, Coastal and Shelf Science, 2012, 111, 95-106.	2.1	59
43	Assessment of Carbon Sequestration Potential in Coastal Wetlands. , 2012, , 517-531.		28
44	The influence of tidal forcing on groundwater flow and nutrient exchange in a salt marsh-dominated estuary. Biogeochemistry, 2012, 108, 27-38.	3.5	96
45	Use of computed tomography imaging for quantifying coarse roots, rhizomes, peat, and particle densities in marsh soils. , 2011, 21, 2156-2171.		34
46	How does vegetation affect sedimentation on tidal marshes? Investigating particle capture and hydrodynamic controls on biologically mediated sedimentation. Journal of Geophysical Research, 2010, 115, .	3.3	230
47	Limits on the adaptability of coastal marshes to rising sea level. Geophysical Research Letters, 2010, 37,	4.0	613
48	Variability in dimethylsulfoniopropionate (DMSP) concentrations in Spartina alterniflora and the effect on Littoraria irrorata. Marine Ecology - Progress Series, 2010, 406, 47-55.	1.9	6
49	Impact of dynamic feedbacks between sedimentation, sea-level rise, and biomass production on near-surface marsh stratigraphy and carbon accumulation. Estuarine, Coastal and Shelf Science, 2009, 82, 377-389.	2.1	253
50	Nutrient cycling relative to δ15N and δ13C natural abundance in a coastal wetland with long-term nutrient additions. Aquatic Ecology, 2009, 43, 803-813.	1.5	11
51	Latitudinal trends in <i>Spartina alterniflora</i> productivity and the response of coastal marshes to global change. Global Change Biology, 2009, 15, 1982-1989.	9.5	207
52	Relationships betweenSpartina alterniflora andLittoraria irrorata in a South Carolina salt marsh. Wetlands, 2009, 29, 818-825.	1.5	24
53	Consequences of Climate Change on the Ecogeomorphology of Coastal Wetlands. Estuaries and Coasts, 2008, 31, 477-491.	2.2	280
54	Ecological engineering in intertidial saltmarshes. Hydrobiologia, 2007, 577, 161-168.	2.0	40

#	Article	IF	CITATIONS
55	Ecological engineering in intertidial saltmarshes. , 2007, , 161-168.		7
56	Estimating Net Primary Production of Salt Marsh Macrophytes. , 2007, , 106-119.		28
57	Competition among marsh macrophytes by means of geomorphological displacement in the intertidal zone. Estuarine, Coastal and Shelf Science, 2006, 69, 395-402.	2.1	81
58	Integrating LIDAR elevation data, multiâ€ s pectral imagery and neural network modelling for marsh characterization. International Journal of Remote Sensing, 2005, 26, 5221-5234.	2.9	111
59	Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants. Journal of Experimental Botany, 2004, 55, 1919-1925.	4.8	120
60	Relationships among Water-Quality Parameters from the North Inlet–Winyah Bay National Estuarine Research Reserve, South Carolina. Journal of Coastal Research, 2004, 10045, 59-74.	0.3	34
61	RESPONSES OF COASTAL WETLANDS TO RISING SEA LEVEL. Ecology, 2002, 83, 2869-2877.	3.2	1,353
62	Phosphorus sorption characteristics of intertidal marsh sediments along an estuarine salinity gradient. Limnology and Oceanography, 1999, 44, 1693-1701.	3.1	122
63	Effects of nutrient loading on the carbon balance of coastal wetland sediments. Limnology and Oceanography, 1999, 44, 699-702.	3.1	113
64	Seasonal variation in the regulation of phytoplankton by nitrogen and grazing in a salt-smarsh estuary. Limnology and Oceanography, 1998, 43, 636-646.	3.1	87
65	The Mass Balance of Salt and Water in Intertidal Sediments: Results from North Inlet, South Carolina. Estuaries and Coasts, 1995, 18, 556.	1.7	69
66	Dimethylsulphoniopropionate (DMSP) in Spartina alterniflora Loisel. Aquatic Botany, 1994, 48, 239-259.	1.6	65
67	Influence of Oxygen and Sulfide Concentration on Nitrogen Uptake Kinetics in Spartina Alterniflora. Ecology, 1990, 71, 282-287.	3.2	161
68	A 5-yr Record of Aerial Primary Production and Stand Characteristics of Spartina Alterniflora. Ecology, 1990, 71, 2209-2217.	3.2	196
69	Modelling light distribution within the canopy of the marsh grass Spartina alterniflora as a function of canopy biomass and solar angle. Agricultural and Forest Meteorology, 1989, 46, 349-361.	4.8	30
70	A Mechanistic, Numerical Model of Sedimentation, Mineralization, and Decomposition for Marsh Sediments. Soil Science Society of America Journal, 1986, 50, 96-105.	2.2	91
71	Decomposition and nutrient dynamics of litter from four species of freshwater emergent macrophytes. Hydrobiologia, 1986, 131, 215-223.	2.0	49
72	Emission of Gaseous Carbon Dioxide from Salt-Marsh Sediments and Its Relation to Other Carbon Losses. Estuaries and Coasts, 1986, 9, 9.	1.7	67

JAMES T MORRIS

#	Article	IF	CITATIONS
73	EFFECTS OF O ₂ ON AMMONIUM UPTAKE AND ROOT RESPIRATION BY SPARTINA ALTERNIFLORA. American Journal of Botany, 1984, 71, 979-985.	1.7	64
74	Theoretical limits of belowground production by Spartina alterniflora: An analysis through modelling. Ecological Modelling, 1984, 26, 155-175.	2.5	17
75	Effects of oxygen and salinity on ammonium uptake by Spartina alterniflora Loisel. and Spartina patens (Aiton) Muhl Journal of Experimental Marine Biology and Ecology, 1984, 78, 87-98.	1.5	49
76	Effects of O 2 on Ammonium Uptake and Root Respiration by Spartina alterniflora. American Journal of Botany, 1984, 71, 979.	1.7	26
77	A Model of Growth Responses by Spartina Alterniflora to Nitrogen Limitation. Journal of Ecology, 1982, 70, 25.	4.0	50