Deyi Hou

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2639416/deyi-hou-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

170	8,094	53	84
papers	citations	h-index	g-index
181	11,451 ext. citations	10.4	7.11
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
170	Stoichiometric carbocatalysis via epoxide-like C-S-O configuration on sulfur-doped biochar for environmental remediation <i>Journal of Hazardous Materials</i> , 2022 , 428, 128223	12.8	2
169	Biochar alters chemical and microbial properties of microplastic-contaminated soil <i>Environmental Research</i> , 2022 , 112807	7.9	5
168	Bioremediation of hexavalent-chromium contaminated groundwater: Microcosm, column, and microbial diversity studies <i>Chemosphere</i> , 2022 , 295, 133877	8.4	O
167	Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils <i>Environmental Pollution</i> , 2022 , 299, 118810	9.3	4
166	Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method <i>Science of the Total Environment</i> , 2022 , 152922	10.2	3
165	Multifunctional applications of biochar beyond carbon storage. <i>International Materials Reviews</i> , 2022 , 1-51	16.1	58
164	Biochar composites: Emerging trends, field successes and sustainability implications. <i>Soil Use and Management</i> , 2022 ,	3.1	14
163	Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. <i>Journal of Hazardous Materials</i> , 2022 , 423, 127060	12.8	13
162	Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. <i>Chemical Engineering Journal</i> , 2022 , 429, 132292	14.7	6
161	Long-term immobilization of soil metalloids under simulated aging: Experimental and modeling approach. <i>Science of the Total Environment</i> , 2022 , 806, 150501	10.2	0
160	Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques. <i>Journal of Hazardous Materials</i> , 2022 , 422, 126808	12.8	16
159	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. <i>Journal of Hazardous Materials</i> , 2022 , 430, 128503	12.8	0
158	Natural field freeze-thaw process leads to different performances of soil amendments towards Cd immobilization and enrichment <i>Science of the Total Environment</i> , 2022 , 831, 154880	10.2	0
157	Nanoplastic stimulates metalloid leaching from historically contaminated soil via indirect displacement <i>Water Research</i> , 2022 , 218, 118468	12.5	0
156	On the ideal groundwater sampling window by utilizing transition pumping period. <i>Journal of Hydrology</i> , 2022 , 610, 127796	6	
155	Sustainable Remediation in China: Elimination, Immobilization, or Dilution. <i>Environmental Science & Environmental & Environme</i>	10.3	3
154	Sustainability assessment and carbon budget of chemical stabilization based multi-objective remediation of Cd contaminated paddy field. <i>Science of the Total Environment</i> , 2021 , 819, 152022	10.2	1

153	Manage the environmental risks of perovskites. <i>One Earth</i> , 2021 , 4, 1534-1537	8.1	2
152	Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. <i>Journal of Hazardous Materials</i> , 2021 , 425, 127971	12.8	8
151	A review of green remediation strategies for heavy metal contaminated soil. <i>Soil Use and Management</i> , 2021 , 37, 936	3.1	29
150	Critical Impact of Nitrogen Vacancies in Nonradical Carbocatalysis on Nitrogen-Doped Graphitic Biochar. <i>Environmental Science & Environmental Science</i>	10.3	34
149	Modeling the Conditional Fragmentation-Induced Microplastic Distribution. <i>Environmental Science & Environmental Science</i> & Environmental Science & En	10.3	14
148	Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. <i>Environmental Science & Environmental Science & Env</i>	10.3	16
147	Biochar Surface Functionality Plays a Vital Role in (Im)Mobilization and Phytoavailability of Soil Vanadium. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 6864-6874	8.3	14
146	A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125378	12.8	55
145	Progress and future prospects in biochar composites: Application and reflection in the soil environment. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 219-271	11.1	41
144	Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review. <i>Critical Reviews in Environmental Science and Technology</i> , 2021 , 51, 2295-2328	11.1	6
143	Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. <i>Journal of Hazardous Materials</i> , 2021 , 401, 123415	12.8	129
142	Performance indicators for a holistic evaluation of catalyst-based degradation-A case study of selected pharmaceuticals and personal care products (PPCPs). <i>Journal of Hazardous Materials</i> , 2021 , 402, 123460	12.8	17
141	Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. <i>Science of the Total Environment</i> , 2021 , 755, 142582	10.2	36
140	Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption. <i>Chemical Engineering Journal</i> , 2021 , 406, 126782	14.7	44
139	VIRS based detection in combination with machine learning for mapping soil pollution. <i>Environmental Pollution</i> , 2021 , 268, 115845	9.3	10
138	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. <i>Journal of Cleaner Production</i> , 2021 , 289, 125142	10.3	25
137	Possible application of stable isotope compositions for the identification of metal sources in soil. Journal of Hazardous Materials, 2021 , 407, 124812	12.8	24
136	Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. <i>Environmental Pollution</i> , 2021 , 270, 116281	9.3	22

Metal contamination and bioremediation of agricultural soils for food safety and sustainability.

A numerical model to optimize LNAPL remediation by multi-phase extraction. Science of the Total

Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of

Nature Reviews Earth & Environment, 2020, 1, 366-381

Environment, 2020, 718, 137309

Cleaner Production, **2020**, 258, 120678

30.2

10.2 7

10.3

171

93

120

119

118

(2020-2020)

117	Quantitative source tracking of heavy metals contained in urban road deposited sediments. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122362	12.8	35
116	Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. <i>Science of the Total Environment</i> , 2020 , 720, 137584	10.2	54
115	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. <i>Environmental Research</i> , 2020 , 183, 109152	7.9	31
114	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. <i>Chemical Engineering Journal</i> , 2020 , 388, 124	12 ¹ 43 ⁷	16
113	The development of groundwater research in the past 40 lyears: A burgeoning trend in groundwater depletion and sustainable management. <i>Journal of Hydrology</i> , 2020 , 587, 125006	6	16
112	Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. <i>Environmental Pollution</i> , 2020 , 264, 114687	9.3	41
111	Green and sustainable remediation: concepts, principles, and pertaining research 2020, 1-17		3
110	Sustainability assessment for remediation decision-making 2020 , 43-73		2
109	Sustainable remediation with an electroactive biochar system: mechanisms and perspectives. <i>Green Chemistry</i> , 2020 , 22, 2688-2711	10	64
108	Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. <i>Environment International</i> , 2020 , 134, 105281	12.9	123
107	Blood lead levels among Chinese children: The shifting influence of industry, traffic, and e-waste over three decades. <i>Environment International</i> , 2020 , 135, 105379	12.9	26
106	Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. <i>Environmental Pollution</i> , 2020 , 259, 113851	9.3	31
105	Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 50, 2724-2774	11.1	42
104	Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation. <i>Environment International</i> , 2020 , 135, 105374	12.9	35
103	Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. <i>Environment International</i> , 2020 , 134, 105046	12.9	352
102	Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone. <i>Journal of Hydrology</i> , 2020 , 580, 124353	6	23
101	Modeling the risk of U(VI) migration through an engineered barrier system at a proposed Chinese high-level radioactive waste repository. <i>Science of the Total Environment</i> , 2020 , 707, 135472	10.2	5
100	Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. <i>Journal of Hazardous Materials</i> , 2020, 387, 122005	12.8	49

99	Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). <i>Journal of Hazardous Materials</i> , 2020 , 389, 121849	12.8	39
98	Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. <i>Science of the Total Environment</i> , 2020 , 706, 135725	10.2	33
97	Nature-Inspired and Sustainable Synthesis of Sulfur-Bearing Fe-Rich Nanoparticles. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 15791-15808	8.3	4
96	Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures. <i>Journal of Cleaner Production</i> , 2020 , 273, 122915	10.3	32
95	Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. <i>Environmental Sciences: Processes and Impacts</i> , 2020 , 22, 1790-1808	4.3	14
94	Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. <i>Environment International</i> , 2020 , 144, 106040	12.9	22
93	Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. <i>Environmental Science & Environmental Scienc</i>	10.3	92
92	Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 50, 549-	·6ᠯᠮ ¹	67
91	A green biochar/iron oxide composite for methylene blue removal. <i>Journal of Hazardous Materials</i> , 2020 , 384, 121286	12.8	165
90	Clay-polymer nanocomposites: Progress and challenges for use in sustainable water treatment. <i>Journal of Hazardous Materials</i> , 2020 , 383, 121125	12.8	77
89	New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. <i>Soil Use and Management</i> , 2020 , 36, 358-3	8ể.1	100
88	The use of biochar for sustainable treatment of contaminated soils 2020 , 119-167		3
87	Heavy metal dissolution mechanisms from electrical industrial sludge. <i>Science of the Total Environment</i> , 2019 , 696, 133922	10.2	7
86	Soil pollution - speed up global mapping. <i>Nature</i> , 2019 , 566, 455	50.4	20
85	Solidification/Stabilization for Soil Remediation: An Old Technology with New Vitality. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	72
84	Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. <i>Environment International</i> , 2019 , 124, 320-328	12.9	157
83	Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. <i>Critical Reviews in Environmental Science and Technology</i> , 2019 , 49, 1386-1423	11.1	61
82	Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. <i>Science of the Total Environment</i> , 2019 , 663, 568-579	10.2	113

(2019-2019)

81	The roles of biochar as green admixture for sediment-based construction products. <i>Cement and Concrete Composites</i> , 2019 , 104, 103348	8.6	101
80	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. <i>Chemosphere</i> , 2019 , 233, 149-156	8.4	34
79	Proof-of-Concept Modeling of a New Groundwater Sampling Approach. <i>Water Resources Research</i> , 2019 , 55, 5135	5.4	4
78	Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. <i>Journal of Hazardous Materials</i> , 2019 , 374, 412-419	12.8	114
77	Measurement of size-fractionated particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury. <i>Science of the Total Environment</i> , 2019 , 675, 176-183	10.2	9
76	Strengthening social-environmental management at contaminated sites to bolster Green and Sustainable Remediation via a survey. <i>Chemosphere</i> , 2019 , 225, 295-303	8.4	9
75	Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. <i>Environment International</i> , 2019 , 126, 747-761	12.9	149
74	Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. <i>Environmental Pollution</i> , 2019 , 249, 527-534	9.3	127
73	Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. <i>Science of the Total Environment</i> , 2019 , 672, 551-562	10.2	77
7²	Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. <i>Journal of Cleaner Production</i> , 2019 , 226, 540-549	10.3	86
71	Organo-layered double hydroxides for the removal of polycyclic aromatic hydrocarbons from soil washing effluents containing high concentrations of surfactants. <i>Journal of Hazardous Materials</i> , 2019 , 373, 678-686	12.8	18
70	Supplying social infrastructure land for satisfying public needs or leasing residential land? A study of local government choices in China. <i>Land Use Policy</i> , 2019 , 87, 104088	5.6	15
69	Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. <i>Environment International</i> , 2019 , 131, 104990	12.9	31
68	On the long-term migration of uranyl in bentonite barrier for high-level radioactive waste repositories: The effect of different host rocks. <i>Chemical Geology</i> , 2019 , 525, 46-57	4.2	8
67	Trade war threatens sustainability. <i>Science</i> , 2019 , 364, 1242-1243	33.3	4
66	Phytoremediation: Climate change resilience and sustainability assessment at a coastal brownfield redevelopment. <i>Environment International</i> , 2019 , 130, 104945	12.9	29
65	Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. <i>Chemosphere</i> , 2019 , 235, 825-831	8.4	54
64	More haste, less speed in replenishing China's groundwater. <i>Nature</i> , 2019 , 569, 487	50.4	7

63	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. <i>Environment International</i> , 2019 , 126, 336-345	12.9	175
62	High stress low-flow (HSLF) sampling: A newly proposed groundwater purge and sampling approach. <i>Science of the Total Environment</i> , 2019 , 664, 127-132	10.2	5
61	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of HO and KSO in the presence of halide ions. <i>Science of the Total Environment</i> , 2019 , 664, 312-321	10.2	75
60	One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol. <i>Journal of Colloid and Interface Science</i> , 2019 , 539, 161-167	9.3	66
59	Spatial distribution of lead contamination in soil and equipment dust at children's playgrounds in Beijing, China. <i>Environmental Pollution</i> , 2019 , 245, 363-370	9.3	50
58	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. <i>Journal of Hazardous Materials</i> , 2019 , 365, 695-706	12.8	110
57	Effect of production temperature on lead removal mechanisms by rice straw biochars. <i>Science of the Total Environment</i> , 2019 , 655, 751-758	10.2	148
56	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. <i>Journal of Cleaner Production</i> , 2019 , 212, 420-427	10.3	16
55	Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. <i>Environment International</i> , 2019 , 122, 357-362	12.9	111
54	Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China. <i>Environmental Pollution</i> , 2018 , 239, 13-20	9.3	18
53	An emerging market for groundwater remediation in China: Policies, statistics, and future outlook. <i>Frontiers of Environmental Science and Engineering</i> , 2018 , 12, 1	5.8	33
52	Green and Sustainable Remediation Movement in the New Millennium and Its Relevance to China 2018 , 39-53		1
51	Targeting cleanups towards a more sustainable future. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 266-269	4.3	18
50	Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. <i>Science of the Total Environment</i> , 2018 , 621, 819-826	10.2	145
49	Examining the impacts of urban form on air pollutant emissions: Evidence from China. <i>Journal of Environmental Management</i> , 2018 , 212, 405-414	7.9	45
48	Climate change mitigation potential of contaminated land redevelopment: A city-level assessment method. <i>Journal of Cleaner Production</i> , 2018 , 171, 1396-1406	10.3	37
47	Mechanisms of biochar assisted immobilization of Pb by bioapatite in aqueous solution. <i>Chemosphere</i> , 2018 , 190, 260-266	8.4	46
46	The potential value of biochar in the mitigation of gaseous emission of nitrogen. <i>Science of the Total Environment</i> , 2018 , 612, 257-268	10.2	49

(2017-2018)

45	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. <i>Chemical Engineering Journal</i> , 2018 , 351, 418-427	14.7	128
44	Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing. <i>Science of the Total Environment</i> , 2018 , 643, 1571-1578	10.2	39
43	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. <i>Journal of Cleaner Production</i> , 2018 , 199, 69-76	10.3	67
42	Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. <i>Journal of Controlled Release</i> , 2018 , 283, 200-213	11.7	115
41	Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. <i>Science of the Total Environment</i> , 2018 , 619-620, 815-826	10.2	310
40	Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. <i>Science of the Total Environment</i> , 2018 , 619-620, 185-193	10.2	75
39	Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. <i>Journal of Cleaner Production</i> , 2018 , 174, 977-987	10.3	316
38	Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. <i>Science of the Total Environment</i> , 2018 , 610-611, 391-40	1 ^{10.2}	83
37	Resilient remediation: Addressing extreme weather and climate change, creating community value 2018 , 29, 7-18		16
36	Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. <i>Environment International</i> , 2018 , 121, 85-101	12.9	92
35	Lead-based paint in children's toys sold on China's major online shopping platforms. <i>Environmental Pollution</i> , 2018 , 241, 311-318	9.3	30
34	Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils. <i>Applied Geochemistry</i> , 2018 , 88, 103-112	3.5	24
33	Farmers' perceptions and adaptation behaviours concerning land degradation: A theoretical framework and a case-study in the Qinghaillibetan Plateau of China. <i>Land Degradation and Development</i> , 2018 , 29, 2460-2471	4.4	16
32	Greener and size-specific synthesis of stable Fe-Cu oxides as earth-abundant adsorbents for malachite green. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 9229-9236	8.3	63
31	A Sustainability Assessment Framework for Agricultural Land Remediation in China. <i>Land Degradation and Development</i> , 2018 , 29, 1005-1018	4.4	69
30	Incorporating life cycle assessment with health risk assessment to select the greenestItleanup level for Pb contaminated soil. <i>Journal of Cleaner Production</i> , 2017 , 162, 1157-1168	10.3	62
29	Complexities Surrounding China's Soil Action Plan. Land Degradation and Development, 2017, 28, 2315-2	23,220	102
28	Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. <i>Environmental Pollution</i> , 2017 , 231, 1188-1200	9.3	234

27	Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model. <i>Journal of Hydrology</i> , 2017 , 552, 505-515	6	14
26	High efficiency removal of methylene blue using SDS surface-modified ZnFeO nanoparticles. Journal of Colloid and Interface Science, 2017 , 508, 39-48	9.3	80
25	Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test. <i>Journal of Environmental Sciences</i> , 2017 , 54, 328-335	6.4	1
24	Assessing the trend in sustainable remediation: A questionnaire survey of remediation professionals in various countries. <i>Journal of Environmental Management</i> , 2016 , 184, 18-26	7.9	25
23	Divergence in stakeholder perception of sustainable remediation. Sustainability Science, 2016, 11, 215-	23604	26
22	Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land. <i>Journal of Cleaner Production</i> , 2016 , 139, 949-956	10.3	53
21	Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated sites in China: Advantages and challenges. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 1	5.8	9
20	Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation. <i>Environmental Science & Environmental </i>	10.3	11
19	Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. <i>Journal of Hazardous Materials</i> , 2015 , 300, 546-552	12.8	47
18	Resilience: A New Consideration for Environmental Remediation in an Era of Climate Change 2015 , 26, 57-67		13
17	Sustainable site clean-up from megaprojects: lessons from London 2012. <i>Proceedings of the Institution of Civil Engineers: Engineering Sustainability</i> , 2015 , 168, 61-70	0.9	8
16	Modeling aerobic biodegradation in the capillary fringe. <i>Environmental Science & Environmental Scienc</i>	10.3	21
15	Sustainability: A new imperative in contaminated land remediation. <i>Environmental Science and Policy</i> , 2014 , 39, 25-34	6.2	176
14	Factor analysis and structural equation modelling of sustainable behaviour in contaminated land remediation. <i>Journal of Cleaner Production</i> , 2014 , 84, 439-449	10.3	73
13	Mercury removal from contaminated soil by thermal treatment with FeCllat reduced temperature. <i>Chemosphere</i> , 2014 , 117, 388-93	8.4	35
12	Modeling the Diffusion of Contaminated Site Remediation Technologies. <i>Water, Air, and Soil Pollution</i> , 2014 , 225, 1	2.6	5
11	Assessing effects of site characteristics on remediation secondary life cycle impact with a generalised framework. <i>Journal of Environmental Planning and Management</i> , 2014 , 57, 1083-1100	2.8	26
10	Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park. <i>Journal of Cleaner Production</i> , 2014 , 83, 87-95	10.3	64

LIST OF PUBLICATIONS

9	The adoption of sustainable remediation behaviour in the US and UK: a cross country comparison and determinant analysis. <i>Science of the Total Environment</i> , 2014 , 490, 905-13	10.2	34
8	Comparing the Adoption of Contaminated Land Remediation Technologies in the United States, United Kingdom, and China 2014 , 25, 33-51		9
7	Evaluation of Apparent Permeability and Field Assessment of Aged Asphalt Capping Systems. Journal of Environmental Engineering, ASCE, 2013, 139, 167-175	2	1
6	Sustainable waste and materials management: national policy and global perspective. <i>Environmental Science & Environmental Sci</i>	10.3	30
5	Vision 2020: more needed in materials reuse and recycling to avoid land contamination. <i>Environmental Science & Environmental </i>	10.3	10
4	Optimizing the Remedial Process at a Petroleum Hydrocarbon Contaminated Site Using a Three-Tier Approach. <i>Journal of Environmental Engineering, ASCE</i> , 2009 , 135, 1171-1180	2	9
3	Enterococci predictions from partial least squares regression models in conjunction with a single-sample standard improve the efficacy of beach management advisories. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	48
2	Expediting climate-smart soils management. Soil Use and Management,	3.1	2
1	Nowcasting Recreational Water Quality179-210		10