
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2639416/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environment International, 2020, 134, 105046.	4.8	701
2	Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar. Journal of Cleaner Production, 2018, 174, 977-987.	4.6	513
3	Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 2020, 1, 366-381.	12.2	493
4	Biochar application for the remediation of heavy metal polluted land: A review of in situ field trials. Science of the Total Environment, 2018, 619-620, 815-826.	3.9	429
5	Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environmental Pollution, 2017, 231, 1188-1200.	3.7	348
6	Environmental fate, toxicity and risk management strategies of nanoplastics in the environment: Current status and future perspectives. Journal of Hazardous Materials, 2021, 401, 123415.	6.5	325
7	A green biochar/iron oxide composite for methylene blue removal. Journal of Hazardous Materials, 2020, 384, 121286.	6.5	315
8	Microplastics undergo accelerated vertical migration in sand soil due to small size and wet-dry cycles. Environmental Pollution, 2019, 249, 527-534.	3.7	287
9	Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 2019, 126, 747-761.	4.8	278
10	Biochar Aging: Mechanisms, Physicochemical Changes, Assessment, And Implications for Field Applications. Environmental Science & Technology, 2020, 54, 14797-14814.	4.6	273
11	Assessment of sources of heavy metals in soil and dust at children's playgrounds in Beijing using GIS and multivariate statistical analysis. Environment International, 2019, 124, 320-328.	4.8	262
12	Green remediation of As and Pb contaminated soil using cement-free clay-based stabilization/solidification. Environment International, 2019, 126, 336-345.	4.8	249
13	Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 2022, 67, 150-200.	9.4	245
14	Waste-derived biochar for water pollution control and sustainable development. Nature Reviews Earth & Environment, 2022, 3, 444-460.	12.2	233
15	Remediation of mercury contaminated soil, water, and air: A review of emerging materials and innovative technologies. Environment International, 2020, 134, 105281.	4.8	228
16	Sustainability: A new imperative in contaminated land remediation. Environmental Science and Policy, 2014, 39, 25-34.	2.4	222
17	Effect of production temperature on lead removal mechanisms by rice straw biochars. Science of the Total Environment, 2019, 655, 751-758.	3.9	214
18	Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. Science of the Total Environment, 2018, 621, 819-826.	3.9	206

#	Article	IF	CITATIONS
19	Nature based solutions for contaminated land remediation and brownfield redevelopment in cities: A review. Science of the Total Environment, 2019, 663, 568-579.	3.9	201
20	New trends in biochar pyrolysis and modification strategies: feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 2020, 36, 358-386.	2.6	200
21	Sustainable in situ remediation of recalcitrant organic pollutants in groundwater with controlled release materials: A review. Journal of Controlled Release, 2018, 283, 200-213.	4.8	189
22	Fabrication and environmental applications of multifunctional mixed metal-biochar composites (MMBC) from red mud and lignin wastes. Journal of Hazardous Materials, 2019, 374, 412-419.	6.5	188
23	Biochar as green additives in cement-based composites with carbon dioxide curing. Journal of Cleaner Production, 2020, 258, 120678.	4.6	180
24	Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil. Chemical Engineering Journal, 2018, 351, 418-427.	6.6	174
25	Roles of biochar-derived dissolved organic matter in soil amendment and environmental remediation: A critical review. Chemical Engineering Journal, 2021, 424, 130387.	6.6	167
26	Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environment International, 2019, 122, 357-362.	4.8	164
27	Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. Environment International, 2018, 121, 85-101.	4.8	160
28	A critical review on performance indicators for evaluating soil biota and soil health of biochar-amended soils. Journal of Hazardous Materials, 2021, 414, 125378.	6.5	155
29	Novel synergy of Si-rich minerals and reactive MgO for stabilisation/solidification of contaminated sediment. Journal of Hazardous Materials, 2019, 365, 695-706.	6.5	151
30	Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 2021, 407, 124344.	6.5	150
31	The roles of biochar as green admixture for sediment-based construction products. Cement and Concrete Composites, 2019, 104, 103348.	4.6	144
32	Groundwater depletion and contamination: Spatial distribution of groundwater resources sustainability in China. Science of the Total Environment, 2019, 672, 551-562.	3.9	143
33	Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review. Critical Reviews in Environmental Science and Technology, 2020, 50, 549-611.	6.6	143
34	Green synthesis of nanoparticles for the remediation of contaminated waters and soils: Constituents, synthesizing methods, and influencing factors. Journal of Cleaner Production, 2019, 226, 540-549.	4.6	139
35	Sustainable soil use and management: An interdisciplinary and systematic approach. Science of the Total Environment, 2020, 729, 138961.	3.9	138
36	Complexities Surrounding China's Soil Action Plan. Land Degradation and Development, 2017, 28, 2315-2320.	1.8	133

#	Article	IF	CITATIONS
37	Clay–polymer nanocomposites: Progress and challenges for use in sustainable water treatment. Journal of Hazardous Materials, 2020, 383, 121125.	6.5	132
38	Solidification/Stabilization for Soil Remediation: An Old Technology with New Vitality. Environmental Science & Technology, 2019, 53, 11615-11617.	4.6	131
39	Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: A case study at a mega-site in China. Science of the Total Environment, 2018, 610-611, 391-401.	3.9	127
40	Machine learning for the selection of carbon-based materials for tetracycline and sulfamethoxazole adsorption. Chemical Engineering Journal, 2021, 406, 126782.	6.6	119
41	A review of green remediation strategies for heavy metal contaminated soil. Soil Use and Management, 2021, 37, 936-963.	2.6	117
42	Critical Impact of Nitrogen Vacancies in Nonradical Carbocatalysis on Nitrogen-Doped Graphitic Biochar. Environmental Science & Technology, 2021, 55, 7004-7014.	4.6	112
43	Green immobilization of toxic metals using alkaline enhanced rice husk biochar: Effects of pyrolysis temperature and KOH concentration. Science of the Total Environment, 2020, 720, 137584.	3.9	110
44	Recycling dredged sediment into fill materials, partition blocks, and paving blocks: Technical and economic assessment. Journal of Cleaner Production, 2018, 199, 69-76.	4.6	109
45	Sustainable remediation with an electroactive biochar system: mechanisms and perspectives. Green Chemistry, 2020, 22, 2688-2711.	4.6	109
46	Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Science of the Total Environment, 2021, 755, 142582.	3.9	109
47	Removal of lead by rice husk biochars produced at different temperatures and implications for their environmental utilizations. Chemosphere, 2019, 235, 825-831.	4.2	107
48	High efficiency removal of methylene blue using SDS surface-modified ZnFe2O4 nanoparticles. Journal of Colloid and Interface Science, 2017, 508, 39-48.	5.0	99
49	Stability of heavy metals in soil washing residue with and without biochar addition under accelerated ageing. Science of the Total Environment, 2018, 619-620, 185-193.	3.9	96
50	Lead contamination in Chinese surface soils: Source identification, spatial-temporal distribution and associated health risks. Critical Reviews in Environmental Science and Technology, 2019, 49, 1386-1423.	6.6	96
51	Factor analysis and structural equation modelling of sustainable behaviour in contaminated land remediation. Journal of Cleaner Production, 2014, 84, 439-449.	4.6	95
52	Machine learning exploration of the critical factors for CO2 adsorption capacity on porous carbon materials at different pressures. Journal of Cleaner Production, 2020, 273, 122915.	4.6	94
53	Critical Review on Biocharâ€Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Advanced Sustainable Systems, 2020, 4, 1900149.	2.7	93
54	Progress and future prospects in biochar composites: Application and reflection in the soil environment. Critical Reviews in Environmental Science and Technology, 2021, 51, 219-271.	6.6	93

#	Article	IF	CITATIONS
55	Engineered biochar for environmental decontamination in aquatic and soil systems: a review. , 2022, 1,		93
56	Degradation of antibiotics by modified vacuum-UV based processes: Mechanistic consequences of H2O2 and K2S2O8 in the presence of halide ions. Science of the Total Environment, 2019, 664, 312-321.	3.9	92
57	A Sustainability Assessment Framework for Agricultural Land Remediation in China. Land Degradation and Development, 2018, 29, 1005-1018.	1.8	91
58	One-pot green synthesis of bimetallic hollow palladium-platinum nanotubes for enhanced catalytic reduction of p-nitrophenol. Journal of Colloid and Interface Science, 2019, 539, 161-167.	5.0	90
59	Enhanced sorption of trivalent antimony by chitosan-loaded biochar in aqueous solutions: Characterization, performance and mechanisms. Journal of Hazardous Materials, 2022, 425, 127971.	6.5	89
60	Green remediation of Cd and Hg contaminated soil using humic acid modified montmorillonite: Immobilization performance under accelerated ageing conditions. Journal of Hazardous Materials, 2020, 387, 122005.	6.5	87
61	Using a hybrid LCA method to evaluate the sustainability of sediment remediation at the London Olympic Park. Journal of Cleaner Production, 2014, 83, 87-95.	4.6	86
62	Incorporating life cycle assessment with health risk assessment to select the †greenest' cleanup level for Pb contaminated soil. Journal of Cleaner Production, 2017, 162, 1157-1168.	4.6	84
63	Field trials of phytomining and phytoremediation: A critical review of influencing factors and effects of additives. Critical Reviews in Environmental Science and Technology, 2020, 50, 2724-2774.	6.6	84
64	Life cycle assessment comparison of thermal desorption and stabilization/solidification of mercury contaminated soil on agricultural land. Journal of Cleaner Production, 2016, 139, 949-956.	4.6	83
65	Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. Journal of Hazardous Materials, 2022, 423, 127060.	6.5	82
66	Green and Size-Specific Synthesis of Stable Fe–Cu Oxides as Earth-Abundant Adsorbents for Malachite Green Removal. ACS Sustainable Chemistry and Engineering, 2018, 6, 9229-9236.	3.2	79
67	Green synthesis of graphitic nanobiochar for the removal of emerging contaminants in aqueous media. Science of the Total Environment, 2020, 706, 135725.	3.9	76
68	Examining the impacts of urban form on air pollutant emissions: Evidence from China. Journal of Environmental Management, 2018, 212, 405-414.	3.8	75
69	Synergistic construction of green tea biochar supported nZVI for immobilization of lead in soil: A mechanistic investigation. Environment International, 2020, 135, 105374.	4.8	74
70	Biochar composites: Emerging trends, field successes and sustainability implications. Soil Use and Management, 2022, 38, 14-38.	2.6	73
71	Sulfur-modified biochar as a soil amendment to stabilize mercury pollution: An accelerated simulation of long-term aging effects. Environmental Pollution, 2020, 264, 114687.	3.7	71
72	The potential value of biochar in the mitigation of gaseous emission of nitrogen. Science of the Total Environment, 2018, 612, 257-268.	3.9	69

#	Article	IF	CITATIONS
73	The effects of iniquitous lead exposure on health. Nature Sustainability, 2020, 3, 77-79.	11.5	69
74	Possible application of stable isotope compositions for the identification of metal sources in soil. Journal of Hazardous Materials, 2021, 407, 124812.	6.5	69
75	Exogenous phosphorus treatment facilitates chelation-mediated cadmium detoxification in perennial ryegrass (Lolium perenne L.). Journal of Hazardous Materials, 2020, 389, 121849.	6.5	67
76	Mechanisms of biochar assisted immobilization of Pb2+ by bioapatite in aqueous solution. Chemosphere, 2018, 190, 260-266.	4.2	64
77	Spatial distribution of lead contamination in soil and equipment dust at children's playgrounds in Beijing, China. Environmental Pollution, 2019, 245, 363-370.	3.7	64
78	Citric acid facilitated thermal treatment: An innovative method for the remediation of mercury contaminated soil. Journal of Hazardous Materials, 2015, 300, 546-552.	6.5	63
79	Effective Dispersion of MgO Nanostructure on Biochar Support as a Basic Catalyst for Glucose Isomerization. ACS Sustainable Chemistry and Engineering, 2020, 8, 6990-7001.	3.2	63
80	Unraveling iron speciation on Fe-biochar with distinct arsenic removal mechanisms and depth distributions of As and Fe. Chemical Engineering Journal, 2021, 425, 131489.	6.6	63
81	Integrated Life Cycle Assessment for Sustainable Remediation of Contaminated Agricultural Soil in China. Environmental Science & amp; Technology, 2021, 55, 12032-12042.	4.6	62
82	Effects of excessive impregnation, magnesium content, and pyrolysis temperature on MgO-coated watermelon rind biochar and its lead removal capacity. Environmental Research, 2020, 183, 109152.	3.7	60
83	Quantitative source tracking of heavy metals contained in urban road deposited sediments. Journal of Hazardous Materials, 2020, 393, 122362.	6.5	59
84	Biochar induced modification of graphene oxide & nZVI and its impact on immobilization of toxic copper in soil. Environmental Pollution, 2020, 259, 113851.	3.7	58
85	Assessing long-term stability of cadmium and lead in a soil washing residue amended with MgO-based binders using quantitative accelerated ageing. Science of the Total Environment, 2018, 643, 1571-1578.	3.9	57
86	Mapping soil pollution by using drone image recognition and machine learning at an arsenic-contaminated agricultural field. Environmental Pollution, 2021, 270, 116281.	3.7	57
87	Comparison of the Hydraulic Fracturing Water Cycle in China and North America: A Critical Review. Environmental Science & Technology, 2021, 55, 7167-7185.	4.6	57
88	Elucidating the redox-driven dynamic interactions between arsenic and iron-impregnated biochar in a paddy soil using geochemical and spectroscopic techniques. Journal of Hazardous Materials, 2022, 422, 126808.	6.5	57
89	Design and fabrication of exfoliated Mg/Al layered double hydroxides on biochar support. Journal of Cleaner Production, 2021, 289, 125142.	4.6	56
90	Enterococci Predictions from Partial Least Squares Regression Models in Conjunction with a Single-Sample Standard Improve the Efficacy of Beach Management Advisories. Environmental Science & Technology, 2006, 40, 1737-1743.	4.6	55

#	Article	IF	CITATIONS
91	Climate change mitigation potential of contaminated land redevelopment: A city-level assessment method. Journal of Cleaner Production, 2018, 171, 1396-1406.	4.6	55
92	Vertical migration of microplastics in porous media: Multiple controlling factors under wet-dry cycling. Journal of Hazardous Materials, 2021, 419, 126413.	6.5	55
93	Mercury removal from contaminated soil by thermal treatment with FeCl 3 at reduced temperature. Chemosphere, 2014, 117, 388-393.	4.2	54
94	Phytoremediation: Climate change resilience and sustainability assessment at a coastal brownfield redevelopment. Environment International, 2019, 130, 104945.	4.8	54
95	Risk evaluation of biochars produced from Cd-contaminated rice straw and optimization of its production for Cd removal. Chemosphere, 2019, 233, 149-156.	4.2	54
96	Effect of immobilizing reagents on soil Cd and Pb lability under freeze-thaw cycles: Implications for sustainable agricultural management in seasonally frozen land. Environment International, 2020, 144, 106040.	4.8	54
97	Lead-based paint in children's toys sold on China's major online shopping platforms. Environmental Pollution, 2018, 241, 311-318.	3.7	50
98	Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environment International, 2019, 131, 104990.	4.8	49
99	Blood lead levels among Chinese children: The shifting influence of industry, traffic, and e-waste over three decades. Environment International, 2020, 135, 105379.	4.8	47
100	Soil plastisphere: Exploration methods, influencing factors, and ecological insights. Journal of Hazardous Materials, 2022, 430, 128503.	6.5	45
101	The adoption of sustainable remediation behaviour in the US and UK: A cross country comparison and determinant analysis. Science of the Total Environment, 2014, 490, 905-913.	3.9	44
102	Modeling the Conditional Fragmentation-Induced Microplastic Distribution. Environmental Science & Technology, 2021, 55, 6012-6021.	4.6	44
103	Biochar alters chemical and microbial properties of microplastic-contaminated soil. Environmental Research, 2022, 209, 112807.	3.7	43
104	An emerging market for groundwater remediation in China: Policies, statistics, and future outlook. Frontiers of Environmental Science and Engineering, 2018, 12, 1.	3.3	41
105	The development of groundwater research in the past 40Âyears: A burgeoning trend in groundwater depletion and sustainable management. Journal of Hydrology, 2020, 587, 125006.	2.3	40
106	(Im)mobilization of arsenic, chromium, and nickel in soils via biochar: A meta-analysis. Environmental Pollution, 2021, 286, 117199.	3.7	40
107	Green remediation of benzene contaminated groundwater using persulfate activated by biochar composite loaded with iron sulfide minerals. Chemical Engineering Journal, 2022, 429, 132292.	6.6	39
108	VIRS based detection in combination with machine learning for mapping soil pollution. Environmental Pollution, 2021, 268, 115845.	3.7	38

#	Article	IF	CITATIONS
109	Nanobiochar-rhizosphere interactions: Implications for the remediation of heavy-metal contaminated soils. Environmental Pollution, 2022, 299, 118810.	3.7	38
110	Assessing effects of site characteristics on remediation secondary life cycle impact with a generalised framework. Journal of Environmental Planning and Management, 2014, 57, 1083-1100.	2.4	37
111	Divergence in stakeholder perception of sustainable remediation. Sustainability Science, 2016, 11, 215-230.	2.5	37
112	Simultaneous reduction and immobilization of Cr(VI) in seasonally frozen areas: Remediation mechanisms and the role of ageing. Journal of Hazardous Materials, 2021, 415, 125650.	6.5	37
113	Assessing the trend in sustainable remediation: A questionnaire survey of remediation professionals in various countries. Journal of Environmental Management, 2016, 184, 18-26.	3.8	36
114	Influence of groundwater table fluctuation on the non-equilibrium transport of volatile organic contaminants in the vadose zone. Journal of Hydrology, 2020, 580, 124353.	2.3	36
115	Organo-layered double hydroxides for the removal of polycyclic aromatic hydrocarbons from soil washing effluents containing high concentrations of surfactants. Journal of Hazardous Materials, 2019, 373, 678-686.	6.5	35
116	Biochar Surface Functionality Plays a Vital Role in (Im)Mobilization and Phytoavailability of Soil Vanadium. ACS Sustainable Chemistry and Engineering, 2021, 9, 6864-6874.	3.2	35
117	Sustainable Waste and Materials Management: National Policy and Global Perspective. Environmental Science & Technology, 2012, 46, 2494-2495.	4.6	32
118	Soil pollution — speed up global mapping. Nature, 2019, 566, 455-455.	13.7	31
119	Aging features of metal(loid)s in biochar-amended soil: Effects of biochar type and aging method. Science of the Total Environment, 2022, 815, 152922.	3.9	31
120	Application of surface complexation modeling to trace metals uptake by biochar-amended agricultural soils. Applied Geochemistry, 2018, 88, 103-112.	1.4	30
121	Sustainable Remediation in China: Elimination, Immobilization, or Dilution. Environmental Science & Technology, 2021, 55, 15572-15574.	4.6	30
122	Effects of aging and weathering on immobilization of trace metals/metalloids in soils amended with biochar. Environmental Sciences: Processes and Impacts, 2020, 22, 1790-1808.	1.7	29
123	The roles of suspended solids in persulfate/Fe2+ treatment of hydraulic fracturing wastewater: Synergistic interplay of inherent wastewater components. Chemical Engineering Journal, 2020, 388, 124243.	6.6	29
124	Supplying social infrastructure land for satisfying public needs or leasing residential land? A study of local government choices in China. Land Use Policy, 2019, 87, 104088.	2.5	28
125	Structural equation modeling of PAHs in ambient air, dust fall, soil, and cabbage in vegetable bases of Northern China. Environmental Pollution, 2018, 239, 13-20.	3.7	27
126	Performance indicators for a holistic evaluation of catalyst-based degradation—A case study of selected pharmaceuticals and personal care products (PPCPs). Journal of Hazardous Materials, 2021, 402, 123460.	6.5	26

#	Article	IF	CITATIONS
127	Modeling Aerobic Biodegradation in the Capillary Fringe. Environmental Science & Technology, 2015, 49, 1501-1510.	4.6	25
128	Biochar for sustainable soil management. Soil Use and Management, 2021, 37, 2-6.	2.6	25
129	Stoichiometric carbocatalysis via epoxide-like Câ^Sâ^O configuration on sulfur-doped biochar for environmental remediation. Journal of Hazardous Materials, 2022, 428, 128223.	6.5	25
130	Targeting cleanups towards a more sustainable future. Environmental Sciences: Processes and Impacts, 2018, 20, 266-269.	1.7	24
131	Resilient remediation: Addressing extreme weather and climate change, creating community value. Remediation, 2018, 29, 7-18.	1.1	24
132	Engineered/designer hierarchical porous carbon materials for organic pollutant removal from water and wastewater: A critical review. Critical Reviews in Environmental Science and Technology, 2021, 51, 2295-2328.	6.6	24
133	Farmers' perceptions and adaptation behaviours concerning land degradation: A theoretical framework and a caseâ€study in the Qinghai–Tibetan Plateau of China. Land Degradation and Development, 2018, 29, 2460-2471.	1.8	23
134	Efficacy and limitations of low-cost adsorbents for in-situ stabilisation of contaminated marine sediment. Journal of Cleaner Production, 2019, 212, 420-427.	4.6	23
135	Shale gas can be a double-edged sword for climate change. Nature Climate Change, 2012, 2, 385-387.	8.1	22
136	Effect of production temperature and particle size of rice husk biochar on mercury immobilization and erosion prevention of a mercury contaminated soil. Journal of Hazardous Materials, 2021, 420, 126646.	6.5	22
137	Sustainability assessment and carbon budget of chemical stabilization based multi-objective remediation of Cd contaminated paddy field. Science of the Total Environment, 2022, 819, 152022.	3.9	18
138	Natural field freeze-thaw process leads to different performances of soil amendments towards Cd immobilization and enrichment. Science of the Total Environment, 2022, 831, 154880.	3.9	18
139	Optimization of groundwater sampling approach under various hydrogeological conditions using a numerical simulation model. Journal of Hydrology, 2017, 552, 505-515.	2.3	17
140	Measurement of size-fractionated particulate-bound mercury in Beijing and implications on sources and dry deposition of mercury. Science of the Total Environment, 2019, 675, 176-183.	3.9	17
141	Heavy metal dissolution mechanisms from electrical industrial sludge. Science of the Total Environment, 2019, 696, 133922.	3.9	16
142	Resilience: A New Consideration for Environmental Remediation in an Era of Climate Change. Remediation, 2015, 26, 57-67.	1.1	15
143	Strengthening social-environmental management at contaminated sites to bolster Green and Sustainable Remediation via a survey. Chemosphere, 2019, 225, 295-303.	4.2	15
144	A numerical model to optimize LNAPL remediation by multi-phase extraction. Science of the Total Environment, 2020, 718, 137309.	3.9	15

#	Article	IF	CITATIONS
145	The term "heavy metal(s)â€; History, current debate, and future use. Science of the Total Environment, 2021, 789, 147951.	3.9	15
146	Expediting climateâ€smart soils management. Soil Use and Management, 2022, 38, 1-6.	2.6	15
147	Nanoplastic stimulates metalloid leaching from historically contaminated soil via indirect displacement. Water Research, 2022, 218, 118468.	5.3	15
148	Insights into simultaneous adsorption and oxidation of antimonite [Sb(III)] by crawfish shell-derived biochar: spectroscopic investigation and theoretical calculations. Biochar, 2022, 4, .	6.2	15
149	On the long-term migration of uranyl in bentonite barrier for high-level radioactive waste repositories: The effect of different host rocks. Chemical Geology, 2019, 525, 46-57.	1.4	14
150	Sustainable soil management and climate change mitigation. Soil Use and Management, 2021, 37, 220-223.	2.6	14
151	Effects of Rate-Limited Mass Transfer on Modeling Vapor Intrusion with Aerobic Biodegradation. Environmental Science & Technology, 2016, 50, 9400-9406.	4.6	13
152	Unraveling natural aging-induced properties change of sludge-derived hydrochar and enhanced cadmium sorption site heterogeneity. Biochar, 2022, 4, .	6.2	13
153	Sustainable site clean-up from megaprojects: lessons from London 2012. Proceedings of the Institution of Civil Engineers: Engineering Sustainability, 2015, 168, 61-70.	0.4	12
154	Optimizing extraction procedures for better removal of potentially toxic elements during EDTA-assisted soil washing. Journal of Soils and Sediments, 2020, 20, 3417-3426.	1.5	12
155	Nowcasting Recreational Water Quality. , 0, , 179-210.		12
156	Comparing the Adoption of Contaminated Land Remediation Technologies in the United States, United Kingdom, and China. Remediation, 2014, 25, 33-51.	1.1	11
157	Engineering practice of mechanical soil aeration for the remediation of volatile organic compound-contaminated sites in China: Advantages and challenges. Frontiers of Environmental Science and Engineering, 2016, 10, 1.	3.3	11
158	Green and sustainable remediation: concepts, principles, and pertaining research. , 2020, , 1-17.		11
159	Optimizing the Remedial Process at a Petroleum Hydrocarbon Contaminated Site Using a Three-Tier Approach. Journal of Environmental Engineering, ASCE, 2009, 135, 1171-1180.	0.7	10
160	Vision 2020: More Needed in Materials Reuse and Recycling to Avoid Land Contamination. Environmental Science & Technology, 2011, 45, 6227-6228.	4.6	10
161	Modeling the risk of U(VI) migration through an engineered barrier system at a proposed Chinese high-level radioactive waste repository. Science of the Total Environment, 2020, 707, 135472.	3.9	9
162	Impact of Atmospheric Pressure Fluctuations on Nonequilibrium Transport of Volatile Organic Contaminants in the Vadose Zone: Experimental and Numerical Modeling. Water Resources Research, 2021, 57, e2020WR029344.	1.7	9

#	Article	IF	CITATIONS
163	More haste, less speed in replenishing China's groundwater. Nature, 2019, 569, 487-487.	13.7	8
164	Long-term immobilization of soil metalloids under simulated aging: Experimental and modeling approach. Science of the Total Environment, 2022, 806, 150501.	3.9	8
165	Modeling the Diffusion of Contaminated Site Remediation Technologies. Water, Air, and Soil Pollution, 2014, 225, 1.	1.1	7
166	High stress low-flow (HSLF) sampling: A newly proposed groundwater purge and sampling approach. Science of the Total Environment, 2019, 664, 127-132.	3.9	7
167	Sustainable remediation and revival of brownfields. Science of the Total Environment, 2020, 741, 140475.	3.9	7
168	Nature-Inspired and Sustainable Synthesis of Sulfur-Bearing Fe-Rich Nanoparticles. ACS Sustainable Chemistry and Engineering, 2020, 8, 15791-15808.	3.2	6
169	Manage the environmental risks of perovskites. One Earth, 2021, 4, 1534-1537.	3.6	6
170	Proofâ€ofâ€Concept Modeling of a New Groundwater Sampling Approach. Water Resources Research, 2019, 55, 5135-5146.	1.7	5
171	Sustainability assessment for remediation decision-making. , 2020, , 43-73.		5
172	The use of biochar for sustainable treatment of contaminated soils. , 2020, , 119-167.		5
173	Bioremediation of hexavalent-chromium contaminated groundwater: Microcosm, column, and microbial diversity studies. Chemosphere, 2022, 295, 133877.	4.2	5
174	Trade war threatens sustainability. Science, 2019, 364, 1242-1243.	6.0	4
175	Treatability of volatile chlorinated hydrocarbon-contaminated soils of different textures along a vertical profile by mechanical soil aeration: A laboratory test. Journal of Environmental Sciences, 2017, 54, 328-335.	3.2	3
176	Knowledge sharing and adoption behaviour: An imperative to promote sustainable soil use and management. Soil Use and Management, 2020, 36, 557-560.	2.6	2
177	Green and sustainable remediation: past, present, and future developments. , 2020, , 19-42.		2
178	Evaluation of Apparent Permeability and Field Assessment of Aged Asphalt Capping Systems. Journal of Environmental Engineering, ASCE, 2013, 139, 167-175.	0.7	1
179	Green and Sustainable Remediation Movement in the New Millennium and Its Relevance to China. , 2018, , 39-53.		1
180	On the ideal groundwater sampling window by utilizing transition pumping period. Journal of Hydrology, 2022, 610, 127796.	2.3	1

#	Article	IF	CITATIONS
181	Remedial process optimization and sustainability benefits. , 2020, , 279-300.		0