Andrew J Orr-Ewing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Orientation and Alignment of Reaction Products. Annual Review of Physical Chemistry, 1994, 45, 315-366.	10.8	340
2	Cavity ring-down spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 337-351.	1.7	338
3	Imaging the dynamics of gas phase reactions. Physical Chemistry Chemical Physics, 2006, 8, 26-53.	2.8	269
4	4ÂÂCavity ring-down and cavity enhanced spectroscopy using diode lasers. Annual Reports on the Progress of Chemistry Section C, 2005, 101, 100.	4.4	225
5	Beyond State-to-State Differential Cross Sections: Determination of Product Polarization in Photoinitiated Bimolecular Reactions. The Journal of Physical Chemistry, 1995, 99, 7591-7603.	2.9	187
6	State-to-state differential cross sections for the reaction Cl (2P32) + CH4 (ν3 = 1, J = 1) → HCl (v′ = 1, J′) · CH3. Chemical Physics Letters, 1993, 212, 163-171.	⁺ 2.6	148
7	Integrated absorption intensity and Einstein coefficients for the O2 a 1Δg–X 3Σgâ~' (0,0) transition: A comparison of cavity ringdown and high resolution Fourier transform spectroscopy with a long-path absorption cell. Journal of Chemical Physics, 1999, 110, 10749-10757.	3.0	135
8	A kinetic study of the CH ₂ OO Criegee intermediate self-reaction, reaction with SO ₂ and unimolecular reaction using cavity ring-down spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 3617-3626.	2.8	115
9	State-to-state differential cross sections from photoinitiated bulb reactions. Chemical Physics Letters, 1993, 212, 155-162.	2.6	108
10	Criegee Intermediate–Alcohol Reactions, A Potential Source of Functionalized Hydroperoxides in the Atmosphere. ACS Earth and Space Chemistry, 2017, 1, 664-672.	2.7	104
11	Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere. ACS Earth and Space Chemistry, 2018, 2, 833-842.	2.7	102
12	The ultraviolet photodissociation dynamics of hydrogen bromide. Journal of Chemical Physics, 1999, 110, 281-288.	3.0	97
13	Probing the Ultrafast Energy Dissipation Mechanism of the Sunscreen Oxybenzone after UVA Irradiation. Journal of Physical Chemistry Letters, 2015, 6, 1363-1368.	4.6	97
14	Continuum state spectroscopy: A high resolution ion imaging study of IBr photolysis in the wavelength range 440–685 nm. Journal of Chemical Physics, 2001, 114, 2629-2646.	3.0	96
15	The dynamics of chlorine-atom reactions with polyatomic organic molecules. International Reviews in Physical Chemistry, 2004, 23, 435-482.	2.3	94
16	Ultrafast Observation of a Photoredox Reaction Mechanism: Photoinitiation in Organocatalyzed Atom-Transfer Radical Polymerization. Journal of the American Chemical Society, 2018, 140, 1285-1293.	13.7	94
17	Dynamical stereochemistry of bimolecular reactions. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 881.	1.7	88
18	Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH ₃) ₂ COO. Journal of Physical Chemistry A, 2017, 121, 4-15.	2.5	87

#	Article	IF	CITATIONS
19	The Study of Reactive Intermediates in Condensed Phases. Journal of the American Chemical Society, 2016, 138, 4695-4705.	13.7	78
20	Vibrationally Quantum-State–Specific Reaction Dynamics of H Atom Abstraction by CN Radical in Solution. Science, 2011, 331, 1423-1426.	12.6	76
21	The dynamics of formation of HCl products from the reaction of Cl atoms with methanol, ethanol, and dimethyl ether. Journal of Chemical Physics, 2002, 117, 5692-5706.	3.0	69
22	On-the-flyab initiotrajectory calculations of the dynamics of Cl atom reactions with methane, ethane and methanol. Journal of Chemical Physics, 2004, 120, 186-198.	3.0	69
23	On the Participation of Photoinduced N–H Bond Fission in Aqueous Adenine at 266 and 220 nm: A Combined Ultrafast Transient Electronic and Vibrational Absorption Spectroscopy Study. Journal of Physical Chemistry A, 2014, 118, 11211-11225.	2.5	69
24	Comparing molecular photofragmentation dynamics in the gas and liquid phases. Physical Chemistry Chemical Physics, 2013, 15, 6567.	2.8	68
25	Effects of NH3 and N2 additions to hot filament activated CH4/H2 gas mixtures. Journal of Applied Physics, 2002, 92, 672-681.	2.5	66
26	Vector correlations and alignment parameters in the photodissociation of HF and DF. Journal of Chemical Physics, 2002, 116, 10760-10771.	3.0	66
27	Ultrafast energy flow in the wake of solution-phase bimolecular reactions. Nature Chemistry, 2011, 3, 850-855.	13.6	65
28	On the UV photodissociation dynamics of hydrogen iodide. Chemical Physics, 1998, 231, 245-260.	1.9	64
29	Temperature and Pressure Dependence of Line Widths and Integrated Absorption Intensities for the O2 aî"g â^' X3Σg- (0,0) Transition. Journal of Physical Chemistry A, 2000, 104, 9467-9480.	2.5	63
30	A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement ofÂCH4 and N2O in air. Applied Physics B: Lasers and Optics, 2011, 102, 879-890.	2.2	63
31	Temperatureâ€Dependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angewandte Chemie - International Edition, 2017, 56, 9044-9047.	13.8	62
32	Measurement of IO radical concentrations in the marine boundary layer using a cavity ring-down spectrometer. Journal of Atmospheric Chemistry, 2007, 58, 69-87.	3.2	60
33	410-nm diode laser cavity ring-down spectroscopy for trace detection of NO2. Chemical Physics Letters, 2003, 367, 1-9.	2.6	58
34	Cavity ring-down spectroscopy measurements of single aerosol particle extinction. I. The effect of position of a particle within the laser beam on extinction. Journal of Chemical Physics, 2007, 126, 174302.	3.0	58
35	Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm. Physical Chemistry Chemical Physics, 2002, 4, 5960-5965.	2.8	56
36	Criegee intermediates: production, detection and reactivity. International Reviews in Physical Chemistry, 2020, 39, 385-424.	2.3	56

#	Article	IF	CITATIONS
37	Fast Fourier transform analysis in cavity ring-down spectroscopy: application to an optical detector for atmospheric NO2. Applied Physics B: Lasers and Optics, 2005, 81, 135-141.	2.2	55
38	KOALA: A program for the processing and decomposition of transient spectra. Review of Scientific Instruments, 2014, 85, 064104.	1.3	54
39	Ultraviolet Absorption Induces Hydrogenâ€Atom Transfer in Gâ‹C Watson–Crick DNA Base Pairs in Solution. Angewandte Chemie - International Edition, 2015, 54, 14719-14722.	13.8	54
40	Ultraviolet photodissociation of HCl in selected rovibrational states: Experiment and theory. Journal of Chemical Physics, 2000, 112, 10259-10268.	3.0	53
41	Spin–orbit branching in Cl(2P) atoms produced by ultraviolet photodissociation of HCl. Physical Chemistry Chemical Physics, 1999, 1, 3247-3251.	2.8	52
42	A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles. Atmospheric Chemistry and Physics, 2017, 17, 9837-9851.	4.9	51
43	A sensitivity comparison of three photoacoustic cells containing a single microphone, a differential dual microphone or a cantilever pressure sensor. Applied Physics B: Lasers and Optics, 2007, 86, 707-713.	2.2	50
44	Product energy deposition of CN + alkane H abstraction reactions in gas and solution phases. Journal of Chemical Physics, 2011, 134, 214508.	3.0	50
45	Selection and characterization of aerosol particle size using a bessel beam optical trap for single particle analysis. Physical Chemistry Chemical Physics, 2012, 14, 6741.	2.8	49
46	Measurements of the evaporation and hygroscopic response of single fine-mode aerosol particles using a Bessel beam optical trap. Physical Chemistry Chemical Physics, 2014, 16, 2118-2128.	2.8	48
47	Continuous wave cavity ring-down spectroscopy measurement of NO2 mixing ratios in ambient air. Analyst, The, 2005, 130, 1595.	3.5	47
48	Vibrational relaxation and microsolvation of DF after F-atom reactions in polar solvents. Science, 2015, 347, 530-533.	12.6	46
49	Experimental and computational studies of Criegee intermediate reactions with NH ₃ and CH ₃ NH ₂ . Physical Chemistry Chemical Physics, 2019, 21, 14042-14052.	2.8	46
50	Product rotational alignment for the reaction O(3P)+ CS(X1Σ+)→ CO(X1Σ+)+ S(3P). Faraday Discussions of the Chemical Society, 1991, 91, 79-90.	2.2	45
51	Predissociation of the A2Î3/2 state of IO studied by cavity ring-down spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2681-2688.	1.7	45
52	Perspective: Bimolecular chemical reaction dynamics in liquids. Journal of Chemical Physics, 2014, 140, 090901.	3.0	45
53	Measurements of vector correlations in bimolecular reactions by laser-pump and probe techniques. Chemical Physics Letters, 1991, 182, 568-574.	2.6	44
54	Spectroscopy and predissociation dynamics of the Ãf 1A′′ state of HNO. Journal of Chemical Physics, 1 106, 5850-5873.	997 3.0	44

4

#	Article	IF	CITATIONS
55	Measurements of C2 and CH concentrations and temperatures in a dc arc jet using cavity ring-down spectroscopy. Journal of Applied Physics, 2002, 92, 4213-4222.	2.5	44
56	Kinetic Studies of the Reactions of IO Radicals Determined by Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry A, 1999, 103, 6173-6180.	2.5	43
57	Rotational distribution of the HCl products from the reaction of Cl(2P) atoms with methanol. Chemical Physics Letters, 2000, 332, 487-495.	2.6	43
58	Sources of Error and Uncertainty in the Use of Cavity Ring Down Spectroscopy to Measure Aerosol Optical Properties. Aerosol Science and Technology, 2011, 45, 1360-1375.	3.1	43
59	Predissociation dynamics of the A 2Σ+ state of SH and SD. Journal of Chemical Physics, 1997, 107, 7591-7600.	3.0	41
60	The product branching and dynamics of the reaction of chlorine atoms with methylamine. Physical Chemistry Chemical Physics, 2003, 5, 1205-1212.	2.8	41
61	Influence of Uncertainties in the Diameter and Refractive Index of Calibration Polystyrene Beads on the Retrieval of Aerosol Optical Properties Using Cavity Ring Down Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 7077-7084.	2.5	41
62	Non-equilibrium reaction and relaxation dynamics in a strongly interacting explicit solvent: F + CD3CN treated with a parallel multi-state EVB model. Journal of Chemical Physics, 2015, 143, 044120.	3.0	41
63	Optical-Feedback Cavity Ring-Down Spectroscopy Measurements of Extinction by Aerosol Particles. Journal of Physical Chemistry A, 2009, 113, 3963-3972.	2.5	40
64	Transient UV pump–IR probe investigation of heterocyclic ring-opening dynamics in the solution phase: the role played by nσ* states in the photoinduced reactions of thiophenone and furanone. Physical Chemistry Chemical Physics, 2014, 16, 21271-21279.	2.8	40
65	Taking the plunge: chemical reaction dynamics in liquids. Chemical Society Reviews, 2017, 46, 7597-7614.	38.1	40
66	The dynamics of the H-atom abstraction reactions between chlorine atoms and the methyl halides. Chemical Physics, 2004, 301, 239-249.	1.9	39
67	Stereodynamics of Chlorine Atom Reactions with Organic Molecules. Journal of Physical Chemistry A, 2005, 109, 11093-11102.	2.5	39
68	Measurements of the wavelength dependent extinction of aerosols by cavity ring down spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 3914.	2.8	39
69	Singlet and Triplet Contributions to the Excited-State Activities of Dihydrophenazine, Phenoxazine, and Phenothiazine Organocatalysts Used in Atom Transfer Radical Polymerization. Journal of the American Chemical Society, 2021, 143, 3613-3627.	13.7	39
70	The spectroscopy of high Rydberg states of ammonia. Journal of Chemical Physics, 1998, 108, 6667-6680.	3.0	38
71	Absorption Cross Sections of Formaldehyde at Wavelengths from 300 to 340 nm at 294 and 245 K. Journal of Physical Chemistry A, 2006, 110, 11645-11653.	2.5	38
72	Ab Initio Molecular Dynamics Study on the Electron Capture Processes of Protonated Methane (CH5+). Journal of Physical Chemistry A, 2008, 112, 11575-11581.	2.5	38

#	Article	IF	CITATIONS
73	Measurements of Light Extinction by Single Aerosol Particles. Journal of Physical Chemistry Letters, 2013, 4, 1748-1752.	4.6	38
74	The UV photodissociation of HI revisited: REMPI measurements of I(2P) atom spin–orbit branching fractions. Chemical Physics Letters, 1999, 315, 187-193.	2.6	37
75	Velocity map imaging of the dynamics of bimolecular chemical reactions. Physical Chemistry Chemical Physics, 2010, 12, 9129.	2.8	37
76	Reduced dimensionality spin-orbit dynamics of CH3 + HCl \$ightleftharpoons\$⇌ CH4 + Cl on <i>ab initio</i> surfaces. Journal of Chemical Physics, 2011, 134, 204311.	3.0	36
77	Longitudinal optical trapping and sizing of aerosol droplets. Optics Express, 2010, 18, 14238.	3.4	35
78	Comparison of the Accuracy of Aerosol Refractive Index Measurements from Single Particle and Ensemble Techniques. Journal of Physical Chemistry A, 2012, 116, 8547-8556.	2.5	35
79	Optical extinction efficiency measurements on fine and accumulation mode aerosol using single particle cavity ring-down spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 15843-15856.	2.8	35
80	Chemical kinetics in carbon depositing d.carc jet CVD reactors. Diamond and Related Materials, 2003, 12, 383-390.	3.9	34
81	Measurements of Extinction by Aerosol Particles in the Near-Infrared Using Continuous Wave Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry A, 2011, 115, 774-783.	2.5	34
82	Direct Kinetic and Atmospheric Modeling Studies of Criegee Intermediate Reactions with Acetone. ACS Earth and Space Chemistry, 2019, 3, 2363-2371.	2.7	34
83	lon imaging studies of the Br(2PJ) atomic products resulting from Br2 photolysis in the wavelength range 260–580 nm. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 2901-2907.	1.7	33
84	Cavity ring-down spectroscopy measurement of single aerosol particle extinction. II. Extinction of light by an aerosol particle in an optical cavity excited by a cw laser. Journal of Chemical Physics, 2007, 126, 174303.	3.0	33
85	Reaction Optimization and Mechanism in Maleimide [5 + 2] Photocycloaddition:Â A Dual Approach Using Tunable UV Lasers and Time-Dependent DFT. Journal of Organic Chemistry, 2007, 72, 1449-1457.	3.2	33
86	lon imaging studies of Cl(2P3/2) fragments arising in the visible photolysis of BrCl: Measurement of orientation, alignment, and alignment-free anisotropy parameters. Journal of Chemical Physics, 2002, 117, 2087-2096.	3.0	32
87	Reaction Control in Synthetic Organic Photochemistry: Switching between [5+2] and [2+2]â€Modes of Cycloaddition. Angewandte Chemie - International Edition, 2009, 48, 8716-8720.	13.8	32
88	Dynamics of Bimolecular Reactions in Solution. Annual Review of Physical Chemistry, 2015, 66, 119-141.	10.8	32
89	Contrasting ring-opening propensities in UV-excited α-pyrone and coumarin. Physical Chemistry Chemical Physics, 2016, 18, 2629-2638.	2.8	32
90	Probing the excited state relaxation dynamics of pyrimidine nucleosides in chloroform solution. Faraday Discussions, 2016, 194, 683-708.	3.2	31

#	Article	IF	CITATIONS
91	Chemical Reaction Dynamics in Liquid Solutions. Journal of Physical Chemistry Letters, 2011, 2, 1139-1144.	4.6	28
92	Mapping the multi-step mechanism of a photoredox catalyzed atom-transfer radical polymerization reaction by direct observation of the reactive intermediates. Chemical Science, 2020, 11, 4475-4481.	7.4	28
93	Cavity ring-down spectroscopy of the Aâ€^2Î3/2–Xâ€^2Î3/2 transition of BrO. Chemical Physics Letters, 1998, 285, 346-351.	2.6	27
94	The UV absorption of ClO Part 1. The A2ΖX2Î spectrum at wavelengths from 285–320 nm studied by cavity ring-down spectroscopy. Physical Chemistry Chemical Physics, 1999, 1, 3079-3085.	2.8	27
95	Intermolecular Hydrogen Bonding Controlled Intersystem Crossing Rates of Benzophenone. Journal of Physical Chemistry Letters, 2018, 9, 1642-1648.	4.6	27
96	Photodissociation Imaging of Diatomic Sulfur (S ₂). Journal of Physical Chemistry A, 2009, 113, 14995-15005.	2.5	26
97	lon imaging studies of the Cl(2PJ) and Br(2PJ) atomic products resulting from BrCl photodissociation in the wavelength range 235–540 nm. Journal of Chemical Physics, 1998, 109, 4367-4377.	3.0	25
98	Predissociation of the B 3Σuâ^' state of S2. Journal of Chemical Physics, 1998, 108, 6594-6605.	3.0	25
99	Velocity map imaging of the near-threshold photodissociation of IBr: accurate determination of De(l–Br). Chemical Physics Letters, 2000, 326, 22-32.	2.6	25
100	Ultraviolet Photolysis of HCHO: Absolute HCO Quantum Yields by Direct Detection of the HCO Radical Photoproduct. Journal of Physical Chemistry A, 2008, 112, 12437-12448.	2.5	25
101	State-to-state resolved differential cross sections for rotationally inelastic scattering of ND ₃ with He. Physical Chemistry Chemical Physics, 2014, 16, 477-488.	2.8	25
102	Assessing the accuracy of complex refractive index retrievals from single aerosol particle cavity ring-down spectroscopy. Aerosol Science and Technology, 2016, 50, 1077-1095.	3.1	25
103	Trace detection of volatile organic compounds by diode laser cavity ring-down spectroscopy. Analyst, The, 2003, 128, 960.	3.5	24
104	Imaging the quantum-state specific differential cross sections of HCl formed from reactions of chlorine atoms with methanol and dimethyl ether. Journal of Chemical Physics, 2004, 120, 2230-2237.	3.0	24
105	High-resolution absorption cross sections of formaldehyde at wavelengths from 313 to 320 nm. Physical Chemistry Chemical Physics, 2005, 7, 79.	2.8	24
106	Trace detection of C2H2 in ambient air using continuous wave cavity ring-down spectroscopy combined with sample pre-concentration. Applied Physics B: Lasers and Optics, 2008, 90, 1-9.	2.2	24
107	First Higherâ€Order Photocycloaddition to a CN Bond: 1,3â€Diazepines from Maleimides. Angewandte Chemie - International Edition, 2009, 48, 2514-2517.	13.8	24
108	Is UV-Induced Electron-Driven Proton Transfer Active in a Chemically Modified A·T DNA Base Pair?. Journal of Physical Chemistry B, 2017, 121, 4448-4455.	2.6	24

#	Article	IF	CITATIONS
109	Evidence for a Double Well in the First Triplet Excited State of 2-Thiouracil. Journal of Physical Chemistry B, 2017, 121, 9274-9280.	2.6	24
110	Picosecond to millisecond tracking of a photocatalytic decarboxylation reaction provides direct mechanistic insights. Nature Communications, 2019, 10, 5152.	12.8	24
111	The UV absorption of ClO Part 2. Predissociation of the A2ÎΩstate studied by ab-initio and Fermi golden rule calculations. Physical Chemistry Chemical Physics, 1999, 1, 3087-3096.	2.8	23
112	Photochemistry of formaldehyde under tropospheric conditions. Faraday Discussions, 2005, 130, 59.	3.2	23
113	The Intramolecular Photometathesis of Pyrroles. Journal of the American Chemical Society, 2007, 129, 3078-3079.	13.7	23
114	Direct and Indirect Hydrogen Abstraction in Cl + Alkene Reactions. Journal of Physical Chemistry A, 2014, 118, 5595-5607.	2.5	23
115	Accurate representations of the physicochemical properties of atmospheric aerosols: when are laboratory measurements of value?. Faraday Discussions, 2017, 200, 639-661.	3.2	23
116	J-dependent linewidths for the (110)–(000) band of the Ã1A″–X1A′ transition of HNO studied by cavity ring-down spectroscopy. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1283-1285.	[/] 1.7	22
117	Combining Preconcentration of Air Samples with Cavity Ring-Down Spectroscopy for Detection of Trace Volatile Organic Compounds in the Atmosphere. Analytical Chemistry, 2004, 76, 7329-7335.	6.5	22
118	Nonadiabatic dynamics in the CH3+HCl→CH4+Cl(PJ2) reaction. Journal of Chemical Physics, 2005, 122, 101101.	3.0	22
119	Classical Trajectory Study of the Dynamics of the Reaction of Cl Atoms with Ethane. Journal of Physical Chemistry A, 2008, 112, 9387-9395.	2.5	22
120	Structure-Dependent Electron Transfer Rates for Dihydrophenazine, Phenoxazine, and Phenothiazine Photoredox Catalysts Employed in Atom Transfer Radical Polymerization. Journal of Physical Chemistry B, 2021, 125, 7840-7854.	2.6	22
121	Predissociation lifetimes of the $A2\hat{1} \pm v = 1$ state of the SH radical determined by cavity ring-down spectroscopy. Chemical Physics Letters, 1997, 268, 421-428.	2.6	21
122	Studying â€~chattering collisions' in the Cl+ethane reaction with classical trajectories. Chemical Physics Letters, 2007, 441, 171-175.	2.6	21
123	Vibrationally quantum-state-specific dynamics of the reactions of CN radicals with organic molecules in solution. Journal of Chemical Physics, 2011, 134, 244503.	3.0	21
124	Accuracy Required in Measurements of Refractive Index and Hygroscopic Response to Reduce Uncertainties in Estimates of Aerosol Radiative Forcing Efficiency. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6469-6486.	3.3	21
125	Solvent Effects on Ultrafast Photochemical Pathways. Accounts of Chemical Research, 2021, 54, 4383-4394.	15.6	21
126	Resonance enhanced multiphoton ionisation spectroscopy of dimethyl sulfide. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3339.	1.7	20

#	Article	IF	CITATIONS
127	Number density and temperature of acetylene in hot-filament and arc-jet activated CH4/H2 gas mixtures measured using diode laser cavity ring-down absorption spectroscopy. Diamond and Related Materials, 2003, 12, 1346-1356.	3.9	20
128	UV Causes Dramatic Changes in Aggregation with Mixtures of Photoactive and Inert Surfactants. Langmuir, 2004, 20, 6120-6126.	3.5	20
129	Influence of the Solvent Environment on the Ultrafast Relaxation Pathways of a Sunscreen Molecule Diethylamino Hydroxybenzoyl Hexyl Benzoate. Journal of Physical Chemistry A, 2021, 125, 636-645.	2.5	20
130	Direct Observation of Reactive Intermediates by Time-Resolved Spectroscopy Unravels the Mechanism of a Radical-Induced 1,2-Metalate Rearrangement. Journal of the American Chemical Society, 2021, 143, 17191-17199.	13.7	20
131	Deviations from Plane-Wave Mie Scattering and Precise Retrieval of Refractive Index for a Single Spherical Particle in an Optical Cavity. Journal of Physical Chemistry A, 2014, 118, 2083-2088.	2.5	19
132	Distinguishing Population and Coherence Transfer Pathways in a Metal Dicarbonyl Complex Using Pulse-Shaped Two-Dimensional Infrared Spectroscopy. Journal of Physical Chemistry B, 2016, 120, 4125-4130.	2.6	19
133	Unravelling the mechanisms of vibrational relaxation in solution. Chemical Science, 2017, 8, 3062-3069.	7.4	19
134	Measurements of the Imaginary Component of the Refractive Index of Weakly Absorbing Single Aerosol Particles. Journal of Physical Chemistry A, 2017, 121, 5700-5710.	2.5	19
135	Investigating the Tropospheric Chemistry of Acetic Acid Using the Global 3â€D Chemistry Transport Model, STOCHEMâ€CRI. Journal of Geophysical Research D: Atmospheres, 2018, 123, 6267-6281.	3.3	19
136	Photochemistry of Benzophenone in Solution: A Tale of Two Different Solvent Environments. Journal of the American Chemical Society, 2019, 141, 15222-15229.	13.7	19
137	Investigation of the Production of Trifluoroacetic Acid from Two Halocarbons, HFC-134a and HFO-1234yf and Its Fates Using a Global Three-Dimensional Chemical Transport Model. ACS Earth and Space Chemistry, 2021, 5, 849-857.	2.7	19
138	Photoisomerization and Photoinduced Reactions in Liquid CCl ₄ and CHCl ₃ . Journal of Physical Chemistry A, 2013, 117, 13388-13398.	2.5	18
139	Vibrationally resolved dynamics of the reaction of Cl atoms with 2,3-dimethylbut-2-ene in chlorinated solvents. Chemical Science, 2013, 4, 226-237.	7.4	18
140	Rotationally inelastic scattering of ND ₃ with H ₂ as a probe of the intermolecular potential energy surface. Molecular Physics, 2015, 113, 3925-3933.	1.7	18
141	Femtosecond to microsecond observation of the photochemical reaction of 1,2-di(quinolin-2-yl)disulfide with methyl methacrylate. Physical Chemistry Chemical Physics, 2017, 19, 12981-12991.	2.8	18
142	Perspective: How can ultrafast laser spectroscopy inform the design of new organic photoredox catalysts for chemical and materials synthesis?. Structural Dynamics, 2019, 6, 010901.	2.3	18
143	Effects of ring-strain on the ultrafast photochemistry of cyclic ketones. Chemical Science, 2020, 11, 1991-2000.	7.4	18
144	Imaging the nonadiabatic dynamics of the CH3 + HCl reaction. Physical Chemistry Chemical Physics, 2007, 9, 3261.	2.8	17

#	Article	IF	CITATIONS
145	NO2 quantum yields from ultraviolet photodissociation of methyl and isopropyl nitrate. Physical Chemistry Chemical Physics, 2010, 12, 6084.	2.8	17
146	Photodissociation and photoionization of highly excited HI molecules. Physical Chemistry Chemical Physics, 2000, 2, 5364-5374.	2.8	16
147	Absorption cross-sections and pressure broadening of rotational lines in the ν5+ ν9band of ethene measured by diode laser cavity ring down spectroscopy. Physical Chemistry Chemical Physics, 2004, 6, 5313-5317.	2.8	16
148	Velocity map imaging study of BrCl photodissociation at 467 nm: Determination of all odd-rank (K=1) Tj ETQq0 C 094305.	0 rgBT /0 3.0	verlock 10 T 16
149	Rotationally inelastic scattering of CD3 and CH3 with He: comparison of velocity map-imaging data with quantum scattering calculations. Chemical Science, 2013, 4, 4199.	7.4	16
150	Translational, rotational and vibrational relaxation dynamics of a solute molecule in a non-interacting solvent. Nature Chemistry, 2016, 8, 1042-1046.	13.6	16
151	Impact of Criegee Intermediate Reactions with Peroxy Radicals on Tropospheric Organic Aerosol. ACS Earth and Space Chemistry, 2020, 4, 1743-1755.	2.7	16
152	Imaging the Dynamics of Reactions of Chlorine Atoms with Methyl Halidesâ€. Journal of Physical Chemistry A, 2004, 108, 7909-7914.	2.5	15
153	Computational Study of Competition between Direct Abstraction and Addition–Elimination in the Reaction of Cl Atoms with Propene. Journal of Physical Chemistry A, 2015, 119, 9452-9464.	2.5	15
154	ORIENTATION AND ALIGNMENT OF THE PRODUCTS OF BIMOLECULAR REACTIONS. Advanced Series in Physical Chemistry, 1996, , 936-1063.	1.5	15
155	Rotational structure in the Ã1A″–X̃1A′ spectrum of formyl chloride. Physical Chemistry Chemical Physics, 1999, 1, 4181-4185.	2.8	14
156	Interaction energy of water dimers from pressure broadening of near-IR absorption lines. Chemical Physics Letters, 2008, 462, 188-191.	2.6	14
157	Triplet state formation and quenching dynamics of 2-mercaptobenzothiazole in solution. Physical Chemistry Chemical Physics, 2016, 18, 26224-26235.	2.8	14
158	Spin Changes Accompany Ultrafast Structural Interconversion in the Ground State of a Cobalt Nitrosyl Complex. Angewandte Chemie - International Edition, 2017, 56, 13713-13716.	13.8	14
159	Imaging the Dynamics of Reactions between Cl Atoms and the Cyclic Ethers Oxirane and Oxetane. Journal of Physical Chemistry A, 2007, 111, 13296-13304.	2.5	13
160	Product Selection through Photon Flux: Laser‧pecific Lactone Synthesis. Angewandte Chemie - International Edition, 2008, 47, 2283-2286.	13.8	13
161	Automated System for Monitoring Trace C ₂ H ₂ in Ambient Air by Cavity Ring-Down Spectroscopy Combined with Sample Preconcentration. Environmental Science & Technology, 2008, 42, 7354-7359.	10.0	13
162	Mid-infrared ethene detection using difference frequency generation in a quasi-phase-matched LiNbO_3 waveguide. Applied Optics, 2009, 48, 5696.	2.1	13

#	Article	IF	CITATIONS
163	Recombination, Solvation and Reaction of CN Radicals Following Ultraviolet Photolysis of ICN in Organic Solvents. Journal of Physical Chemistry A, 2015, 119, 12911-12923.	2.5	13
164	The impact of bath gas composition on the calibration of photoacoustic spectrometers with ozone at discrete visible wavelengths spanning the Chappuis band. Atmospheric Measurement Techniques, 2019, 12, 2371-2385.	3.1	13
165	Adiabatic and nonadiabatic dynamics in the CH3(CD3)+HCl reaction. Journal of Chemical Physics, 2008, 128, 184303.	3.0	12
166	Direct Observation of Ylide and Enol Intermediates Formed in Competition with Wolff Rearrangement of Photoexcited Ethyl Diazoacetoacetate. Journal of the American Chemical Society, 2020, 142, 7836-7844.	13.7	12
167	The dynamics of reaction of Cl atoms with tetramethylsilane. Physical Chemistry Chemical Physics, 2008, 10, 1675.	2.8	11
168	Phase-shift cavity ring-down spectroscopy using mid-IR light from a difference frequency generation PPLN waveguide. Optics Letters, 2010, 35, 1383.	3.3	11
169	Differential and integral cross sections for the rotationally inelastic scattering of methyl radicals with H2 and D2. Journal of Chemical Physics, 2014, 140, 204318.	3.0	11
170	Empirical Valence Bond Theory Studies of the CH ₄ + Cl → CH ₃ + HCl Reaction. Journal of Physical Chemistry A, 2015, 119, 9590-9598.	2.5	11
171	Rotationally inelastic scattering of methyl radicals with Ar and N2. Journal of Chemical Physics, 2015, 142, 014306.	3.0	11
172	Photochemical reaction dynamics of 2,2′-dithiobis(benzothiazole): direct observation of the addition product of an aromatic thiyl radical to an alkene with time-resolved vibrational and electronic absorption spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 12115-12127.	2.8	11
173	Absorption cross-sections and pressure broadening of rotational lines in the 311/23 band of N2O determined by diode laser cavity ring-down spectroscopy. Chemical Physics Letters, 2003, 377, 439-444.	2.6	10
174	Velocity map imaging the dynamics of the reactions of Cl atoms with neopentane and tetramethylsilane. Journal of Chemical Physics, 2010, 132, 244312.	3.0	10
175	Collision dynamics of symmetric top molecules: A comparison of the rotationally inelastic scattering of CD3 and ND3 with He. Journal of Chemical Physics, 2014, 140, 134308.	3.0	10
176	UV-Induced Isomerization Dynamics of <i>N</i> -Methyl-2-pyridone in Solution. Journal of Physical Chemistry A, 2015, 119, 88-94.	2.5	10
177	Rotationally Inelastic Scattering of Quantum-State-Selected ND ₃ withÂAr. Journal of Physical Chemistry A, 2015, 119, 5979-5987.	2.5	10
178	Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1475-1494.	2.8	10
179	A CASSCF/MRCI study of the low-lying Rydberg states of CIO. Molecular Physics, 2000, 98, 793-806.	1.7	9
180	Waveguide-enhanced 2D-IR spectroscopy in the gas phase. Optics Letters, 2013, 38, 3596.	3.3	9

#	Article	IF	CITATIONS
181	Dynamics of photodissociation of XeF ₂ in organic solvents. Physical Chemistry Chemical Physics, 2014, 16, 16095-16102.	2.8	9
182	Tuning the Excited-State Dynamics of Acetophenone Using Metal Ions in Solution. Journal of Physical Chemistry Letters, 2021, 12, 5473-5478.	4.6	9
183	Accurate Measurement of the Optical Properties of Single Aerosol Particles Using Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry A, 2022, 126, 2619-2631.	2.5	9
184	Pressure Broadening of H ₂ O Absorption Lines in the 1.3 μm Region Measured by Continuous Wave-Cavity Ring-Down Spectroscopy: Application in the Trace Detection of Water Vapor in N ₂ , SiH ₄ , CF ₄ , and PH ₃ . Applied Spectroscopy, 2008, 62, 1354-1362.	2.2	8
185	Velocity map imaging of the dynamics of the CH3+ HCl → CH4+ Cl reaction using a dual molecular beam method. Molecular Physics, 2010, 108, 981-992.	1.7	8
186	Development and application of an optical sensor for ethene in ambient air using near infra-red cavity ring down spectroscopy and sample preconcentration. Journal of Environmental Monitoring, 2012, 14, 3094.	2.1	8
187	Stripping down SN2. Nature Chemistry, 2012, 4, 522-523.	13.6	8
188	Reaction Dynamics of CN Radicals in Acetonitrile Solutions. Journal of Physical Chemistry A, 2015, 119, 12924-12934.	2.5	8
189	Primary vs. secondary H-atom abstraction in the Cl-atom reaction with n-pentane. Physical Chemistry Chemical Physics, 2017, 19, 1614-1626.	2.8	8
190	Optical Interrogation of Single Levitated Droplets in a Linear Quadrupole Trap by Cavity Ring-Down Spectroscopy. Journal of Physical Chemistry A, 2021, 125, 394-405.	2.5	8
191	(1 + 1) Resonance-enhanced multiphoton ionization spectroscopy of jet-cooled C2H2, C2HD and C2D2in the range 46 400–48 400 cm–1. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 3327-3337.	1.7	7
192	Determination of all scattering phases and amplitudes in the photodissociation of a diatomic molecule. Molecular Physics, 2007, 105, 885-892.	1.7	7
193	Quantum Yields for Photochemical Production of NO2 from Organic Nitrates at Tropospherically Relevant Wavelengths. Journal of Physical Chemistry A, 2014, 118, 2756-2764.	2.5	7
194	Electronic Relaxation Dynamics of UV-Photoexcited 2-Aminopurine–Thymine Base Pairs in Watson–Crick and Hoogsteen Conformations. Journal of Physical Chemistry B, 2019, 123, 2904-2914.	2.6	7
195	Investigating the Atmospheric Sources and Sinks of Perfluorooctanoic Acid Using a Global Chemistry Transport Model. Atmosphere, 2020, 11, 407.	2.3	7
196	Direct Spectroscopic Quantification of the Absorption and Scattering Properties for Single Aerosol Particles. Journal of Physical Chemistry A, 2022, 126, 1571-1577.	2.5	7
197	Vibrational Excitation of Both Products of the Reaction of CN Radicals with Acetone in Solution. Journal of Physical Chemistry A, 2015, 119, 12090-12101.	2.5	6
198	Dynamical Effects and Product Distributions in Simulated CN + Methane Reactions. Journal of Physical Chemistry A, 2016, 120, 4672-4682.	2.5	6

#	Article	IF	CITATIONS
199	Observation of Rainbows in the Rotationally Inelastic Scattering of NO with CH ₄ . Journal of Physical Chemistry A, 2019, 123, 7758-7767.	2.5	6
200	Enantioselective one-carbon expansion of aromatic rings by simultaneous formation and chromoselective irradiation of a transient coloured enolate. Chemical Science, 2022, 13, 2079-2085.	7.4	6
201	How do the structures of polyatomic molecules affect their reaction dynamics?. Physica Scripta, 2006, 73, C14-C19.	2.5	5
202	Extinction cross section measurements for a single optically trapped particle. Proceedings of SPIE, 2015, , .	0.8	5
203	Evidence for concerted ring opening and C–Br bond breaking in UV-excited bromocyclopropane. Journal of Chemical Physics, 2016, 144, 244312.	3.0	5
204	Temperatureâ€Đependence of the Rates of Reaction of Trifluoroacetic Acid with Criegee Intermediates. Angewandte Chemie, 2017, 129, 9172-9175.	2.0	5
205	Collision Energy Dependence of the Competing Mechanisms of Reaction of Chlorine Atoms with Propene. Journal of Physical Chemistry A, 2019, 123, 2679-2686.	2.5	5
206	Transient absorption spectroscopy of the electron transfer step in the photochemically activated polymerizations of <i>N</i> -ethylcarbazole and 9-phenylcarbazole. Physical Chemistry Chemical Physics, 2021, 23, 18378-18392.	2.8	5
207	Spin Changes Accompany Ultrafast Structural Interconversion in the Ground State of a Cobalt Nitrosyl Complex. Angewandte Chemie, 2017, 129, 13901-13904.	2.0	5
208	The near ultraviolet spectrum of the FCO radical: Re-assignment of transitions and predissociation of the electronically excited state. Journal of Chemical Physics, 2000, 113, 7237-7251.	3.0	4
209	Valence and Rydberg States of FO:Â An ab Initio Search for Electronic Transitions. Journal of Physical Chemistry A, 2000, 104, 8759-8764.	2.5	4
210	The effect of reagent translational energy on the dynamics of the reaction O(3P)+CS(X 1Σ+)→CO(X 1Σ+)+S(3P). Journal of Chemical Physics, 1997, 106, 1391-1401.	3.0	3
211	Conformer-specific geminate recombination following methyl nitrite photolysis in solution. Chemical Physics Letters, 2017, 683, 416-420.	2.6	3
212	Efficient intersystem crossing in 2-aminopurine riboside probed by femtosecond time-resolved transient vibrational absorption spectroscopy. Physical Chemistry Chemical Physics, 2018, 20, 20033-20042.	2.8	3
213	Virtual Issue in Atmospheric Chemistry Research. Journal of Physical Chemistry A, 2020, 124, 5697-5699.	2.5	3
214	Direct Observation of the Dynamics of Ylide Solvation by Hydrogen-bond Donors Using Time-Resolved Infrared Spectroscopy. Journal of the American Chemical Society, 2022, 144, 9330-9343.	13.7	3
215	Measuring acetylene concentrations using a frequency chirped continuous wave diode laser operating in the near infrared. Analyst, The, 2006, 131, 731.	3.5	2
216	Direct comparison of 3-centre and 4-centre HBr elimination pathways in methyl-substituted vinyl bromides. Physical Chemistry Chemical Physics, 2016, 18, 28353-28364.	2.8	2

#	Article	IF	CITATIONS
217	Resolving the excited state relaxation dynamics of guanosine monomers and hydrogen-bonded homodimers in chloroform solution. Chemical Physics, 2018, 515, 480-492.	1.9	2
218	<title>State-to-state dynamics and doubly differential cross sections of the reaction of chlorine atoms with CH4(v3=1, J)</title> . , 1993, , .		1
219	Near-ultraviolet photodissociation dynamics of HBr and HI revealed by H (Rydberg) atom photofragment translational spectroscopy. , 1998, 3271, 84.		1
220	Vibrational and condensed phase dynamics: general discussion. Faraday Discussions, 2016, 194, 747-775.	3.2	1
221	The Dynamics of Chlorine-Atom Reactions with Polyatomic Organic Molecules. ChemInform, 2005, 36, no.	0.0	0
222	TDLS 2011. Applied Physics B: Lasers and Optics, 2012, 109, 371-371.	2.2	0
223	Aerosol optical chromatography and measurements of light extinction by single particles. Proceedings of SPIE, 2014, , .	0.8	0
224	Photodissociation and reaction dynamics. Physical Chemistry Chemical Physics, 2019, 21, 13878-13879.	2.8	0
225	Virtual Issue in Atmospheric Chemistry Research. ACS Earth and Space Chemistry, 2020, 4, 958-960.	2.7	0
226	A Venue for Advances in Experimental and Theoretical Methods in Physical Chemistry. Journal of Physical Chemistry A, 2022, 126, 177-179.	2.5	0