
Zinan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2638392/publications.pdf

Version: 2024-02-01

ZINAN WANC

#	Article	IF	CITATIONS
1	Wideband Remote-Sensing Based on Random Fiber Laser. Journal of Lightwave Technology, 2022, 40, 3104-3110.	4.6	18
2	Difference-Frequency Generation of Random Fiber Lasers for Broadly Tunable Mid-Infrared Continuous-Wave Random Lasing Generation. Journal of Lightwave Technology, 2022, 40, 2965-2970.	4.6	16
3	Expressions with Aspectual Verbs Elicit Slower Reading Times than Those with Psychological Verbs: An Eye-Tracking Study in Mandarin Chinese. Journal of Psycholinguistic Research, 2022, , 1.	1.3	0
4	Golay Coding Φ-OTDR With Distributed Frequency-Drift Compensation. IEEE Sensors Journal, 2022, 22, 12894-12899.	4.7	8
5	Impact of feedback bandwidth on Raman random fiber laser remote-sensing. Optics Express, 2022, 30, 21268.	3.4	11
6	Quantitative Measurement of Î ³ -Ray and e-Beam Effects on Fiber Rayleigh Scattering Coefficient. Photonic Sensors, 2021, 11, 298.	5.0	1
7	Antagonistic pleiotropy can promote adaptation to patchy environments*. Evolution; International Journal of Organic Evolution, 2021, 75, 197-199.	2.3	2
8	Sociosexual environments can drive the evolution of plasticity in mating behavior *. Evolution; International Journal of Organic Evolution, 2021, 75, 195-196.	2.3	0
9	Quasi-Distributed Fiber-Optic Acoustic Sensing With MIMO Technology. IEEE Internet of Things Journal, 2021, 8, 15284-15291.	8.7	19
10	High sensitivity and large measurable range distributed acoustic sensing with Rayleigh-enhanced fiber. Optics Letters, 2021, 46, 2569.	3.3	20
11	Tailoring the efficiency and spectrum of a green random laser generated by frequency doubling of random fiber lasers. Optics Express, 2021, 29, 21521.	3.4	6
12	Channel-multiplexing for quasi-distributed acoustic sensing with orthogonal codes. Optics Express, 2021, 29, 36828.	3.4	6
13	LD-Pumped Random Fiber Laser Based on Erbium-Ytterbium Co-Doped Fiber. Photonic Sensors, 2020, 10, 181-185.	5.0	13
14	Bipolar-Coding \$Phi\$-OTDR with Interference Fading Elimination and Frequency Drift Compensation. Journal of Lightwave Technology, 2020, 38, 6121-6128.	4.6	33
15	Bandwidth-Enhanced Quasi-Distributed Acoustic Sensing With Interleaved Chirped Pulses. IEEE Sensors Journal, 2020, 20, 12739-12743.	4.7	21
16	Single-Shot COTDR Using Sub-Chirped-Pulse Extraction Algorithm for Distributed Strain Sensing. Journal of Lightwave Technology, 2020, 38, 2028-2036.	4.6	42
17	Artificial Neural Network for Accurate Retrieval of Fiber Brillouin Frequency Shift With Non-Local Effects. IEEE Sensors Journal, 2020, 20, 8559-8569.	4.7	13
18	Integrated principal component analysis denoising technique for phase-sensitive optical time domain reflectometry vibration detection. Applied Optics, 2020, 59, 669.	1.8	9

#	Article	IF	CITATIONS
19	Temporal ghost imaging with random fiber lasers. Optics Express, 2020, 28, 9957.	3.4	54
20	Long-distance distributed acoustic sensing utilizing negative frequency band. Optics Express, 2020, 28, 35844.	3.4	34
21	Quasi-distributed acoustic sensing with interleaved identical chirped pulses for multiplying the measurement slew-rate. Optics Express, 2020, 28, 38465.	3.4	22
22	Low-noise high-order Raman fiber laser pumped by random lasing. Optics Letters, 2020, 45, 5804.	3.3	37
23	Ultrafast convergent power-balance model for Raman random fiber laser with half-open cavity. Optics Express, 2020, 28, 22500.	3.4	6
24	Interference Fading Elimination With Single Rectangular Pulse in \$Phi\$-OTDR. Journal of Lightwave Technology, 2019, 37, 3381-3387.	4.6	72
25	175-km Repeaterless BOTDA With Hybrid High-Order Random Fiber Laser Amplification. Journal of Lightwave Technology, 2019, 37, 4680-4686.	4.6	46
26	Identification and Gene Expression Analysis of the Pheromone Biosynthesis Activating Neuropeptide Receptor (PBANR) From the Ostrinia furnacalis (Lepidoptera: Pyralidae). Journal of Insect Science, 2019, 19, .	1.5	7
27	Effects of Winter Cover Crops on Rice Pests, Natural Enemies, and Grain Yield in a Rice Rotation System. Journal of Insect Science, 2019, 19, .	1.5	11
28	Optimized Feedforward Neural Network Training for Efficient Brillouin Frequency Shift Retrieval in Fiber. IEEE Access, 2019, 7, 68034-68042.	4.2	24
29	Rayleigh Fading Suppression in One-Dimensional Optical Scatters. IEEE Access, 2019, 7, 17125-17132.	4.2	56
30	Thermal Tolerance and Prediction of Northern Distribution of the Crapemyrtle Bark Scale (Hemiptera:) Tj ETQqC	000,rgBT /	Overlock 10 1
31	The application of PCA on $ ilde{O}$ "-OTDR sensing system for vibration detection. , 2019, , .		0
32	Bipolar coding for phase-demodulated $\hat{I} $ -OTDR with coherent detection. , 2019, , .		4
33	Distributed Acoustic Sensing Based on Pulse-Coding Phase-Sensitive OTDR. IEEE Internet of Things Journal, 2019, 6, 6117-6124.	8.7	83
34	Physiology of crapemyrtle bark scale, Acanthococcus lagerstroemiae (Kuwana), associated with seasonally altered cold tolerance. Journal of Insect Physiology, 2019, 112, 1-8.	2.0	25
35	Quasi-kilowatt random fiber laser. Optics Letters, 2019, 44, 2613.	3.3	47
36	Lévy spectral intensity statistics in a Raman random fiber laser. Optics Letters, 2019, 44, 2799.	3.3	23

 $L\tilde{A}$ ©vy spectral intensity statistics in a Raman random fiber laser. Optics Letters, 2019, 44, 2799. 36 3.3

#	Article	IF	CITATIONS
37	Temperature-Dependent Development and Host Range of Crapemyrtle Bark Scale, Acanthococcus lagerstroemiae (Kuwana) (Hemiptera: Eriococcidae). Florida Entomologist, 2019, 102, 181.	0.5	12
38	Real-time compensation of the time-skew and phase-mismatch for Heterodyne DAS system. , 2019, , .		0
39	Dynamic coherent optical time-domain reflectometry with pulse compression. , 2019, , .		2
40	Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser. Laser Physics Letters, 2018, 15, 035105.	1.4	12
41	Chirped-pulse coherent-OTDR with predistortion. Journal of Optics (United Kingdom), 2018, 20, 034001.	2.2	16
42	1.5 μm Low Threshold, High Efficiency Random Fiber Laser with Hybrid Erbium–Raman Gain. Journal of Lightwave Technology, 2018, 36, 844-849.	4.6	30
43	Optimized ANN training strategy for fast and accurate fiber Brillouin frequency shift calculation. , 2018, , .		0
44	Validity of Kramers-Kronig Relation in Signal Retrieval of \hat{I} -OTDR. , 2018, , .		0
45	100km dynamic strain sensing via CP-ΦOTDR. , 2018, , .		2
46	Characterization and Compensation of Phase Offset in Φ-OTDR With Heterodyne Detection. Journal of Lightwave Technology, 2018, 36, 5481-5487.	4.6	20
47	Ultra-Long-Distance Hybrid BOTDA/Ð ¤ OTDR. Sensors, 2018, 18, 976.	3.8	42
48	Impact of I/Q Amplitude Imbalance on Coherent \$Phi \$ -OTDR. Journal of Lightwave Technology, 2018, 36, 1069-1075.	4.6	24
49	Spectral Tailoring of Random Fiber Laser Based on the Multimode Interference Filter. IEEE Access, 2018, 6, 39435-39441.	4.2	5
50	Spectral tailoring of random fiber laser utilizing multimode fiber. , 2018, , .		0
51	Towards ultra-long-distance distributed fiber optic sensing. , 2017, , .		2
52	Common-cavity ytterbium/Raman random distributed feedback fiber laser. Laser Physics Letters, 2017, 14, 065101.	1.4	22
53	Distributed acoustic sensing based on correlation analysis of fast and linear sweep OFDR. , 2017, , .		4
54	Cladding-pumped Erbium-Ytterbium co-doped random fiber laser. , 2017, , .		1

#	Article	IF	CITATIONS
55	Noise level estimation of BOTDA for optimal non-local means denoising. Applied Optics, 2017, 56, 4727.	2.1	36
56	Impact of optical front-end imbalance in $\hat{I} $ -OTDR with coherent receiver. , 2017, , .		1
57	Optical pulse compression radar at double repetition rate with both positive and negative beat frequencies. , 2017, , .		4
58	A Review of the Tawny Crazy Ant, Nylanderia fulva, an Emergent Ant Invader in the Southern United States: Is Biological Control a Feasible Management Option?. Insects, 2016, 7, 77.	2.2	19
59	Crapemyrtle Bark Scale: A New Threat for Crapemyrtles, a Popular Landscape Plant in the U.S Insects, 2016, 7, 78.	2.2	28
60	Long-distance random fiber laser point sensing system incorporating active fiber. Optics Express, 2016, 24, 22448.	3.4	37
61	Optimization of Detection Schemes in BOTDA. , 2016, , .		3
62	Proposal for distributed measurement of Müller matrix in optical fibers. , 2016, , .		0
63	157km BOTDA with pulse coding and image processing. Proceedings of SPIE, 2016, , .	0.8	6
64	Non-local means denoising based on noise level estimation for BOTDA. , 2016, , .		1
65	Polarization-modulated random fiber laser. Laser Physics Letters, 2016, 13, 055101.	1.4	22
66	Coherent $\hat{I}_{\rm I}^{\rm I}$ -OTDR based on I/Q demodulation and homodyne detection. Optics Express, 2016, 24, 853.	3.4	330
67	Long-range BOTDA denoising with multi-threshold 2D discrete wavelet. , 2016, , .		7
68	Remote point-sensing systems based on erbium-Raman random fiber laser. , 2016, , .		0
69	Cascaded random distributed-feedback Raman fiber laser assisted by Fresnel reflection. Optics Express, 2015, 23, 28076.	3.4	7
70	Role of the mirror's reflectivity in forward-pumped random fiber laser. Optics Express, 2015, 23, 1421.	3.4	44
71	Separation and Determination of the Disturbing Signals in Phase-Sensitive Optical Time Domain Reflectometry (Φ-OTDR). Journal of Lightwave Technology, 2015, 33, 3156-3162.	4.6	108
72	Low-Threshold, High-Efficiency Random Fiber Laser With Linear Output. IEEE Photonics Technology Letters, 2015, 27, 319-322.	2.5	17

#	Article	IF	CITATIONS
73	High-power, high-efficiency random fiber lasing with a low reflectivity mirror. , 2015, , .		0
74	Recent advances in fundamentals and applications of random fiber lasers. Advances in Optics and Photonics, 2015, 7, 516.	25.5	248
75	Ultra-long dual-sideband BOTDA with balanced detection. Optics and Laser Technology, 2015, 68, 206-210.	4.6	23
76	High Power Random Fiber Laser With Short Cavity Length: Theoretical and Experimental Investigations. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 10-15.	2.9	85
77	175km phase-sensitive OTDR with hybrid distributed amplification. Proceedings of SPIE, 2014, , .	0.8	9
78	Field test of a fully distributed fiber optic intrusion detection system for long-distance security monitoring of national borderline. Proceedings of SPIE, 2014, , .	0.8	27
79	124km phase-sensitive OTDR with Brillouin amplification. Proceedings of SPIE, 2014, , .	0.8	6
80	Spectrum-adjustable random lasing in single-mode fiber controlled by a FBG. Optics and Laser Technology, 2014, 57, 100-103.	4.6	8
81	Flat amplitude multiwavelength Brillouin–Raman random fiber laser with a half-open cavity. Applied Physics B: Lasers and Optics, 2013, 112, 467-471.	2.2	38
82	Third-order random lasing via Raman gain and Rayleigh feedback within a half-open cavity. Optics Express, 2013, 21, 20090.	3.4	59
83	Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering. Optics Express, 2013, 21, 29358.	3.4	67
84	Long-distance fiber-optic point-sensing systems based on the second-order random fiber laser. , 2012, , .		0
85	CO 2 -laser induced long-period fiber gratings in nano-engineered bend insensitive single-mode fiber. Proceedings of SPIE, 2012, , .	0.8	Ο
86	Novel long-distance fiber-optic sensing systems based on random fiber lasers. Proceedings of SPIE, 2012, , .	0.8	6
87	High sensitivity third-order autocorrelation measurement by intensity modulation and third harmonic detection. Optics Letters, 2011, 36, 2372.	3.3	12
88	Adaptive sensor selection for multitarget detection in Heterogeneous Sensor Networks. , 2010, , .		5
89	Automatic optical polarization demultiplexing for polarization division multiplexed signals. Optics Express, 2009, 17, 3183.	3.4	28
90	PMD and PDL impairments in polarization division multiplexing signals with direct detection. Optics Express, 2009, 17, 7993.	3.4	38

#	Article	IF	CITATIONS
91	Tunable singleâ€ŧoâ€dual channel wavelength conversion of picosecond pulses based on fourâ€wave mixing in microstructure fibers. Microwave and Optical Technology Letters, 2008, 50, 1453-1455.	1.4	0
92	PMD and PDL tolerance of polarization division multiplexed signals with direct detection. , 2008, , .		0
93	Design of a microstructure fibre for slope-matched dispersion compensation. Journal of Optics, 2007, 9, 435-440.	1.5	12
94	Ultraflat supercontinuum generation in a dispersion-flattened microstructure fiber. Microwave and Optical Technology Letters, 2007, 49, 1062-1064.	1.4	3