Nicholas J Provart

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263808/publications.pdf Version: 2024-02-01

		66234	34900
99	14,100	42	98
papers	citations	h-index	g-index
112 all docs	112 docs citations	112 times ranked	16949 citing authors

#	Article	IF	CITATIONS
1	Abscisic Acid Inhibits Type 2C Protein Phosphatases via the PYR/PYL Family of START Proteins. Science, 2009, 324, 1068-1071.	6.0	2,385
2	An "Electronic Fluorescent Pictograph―Browser for Exploring and Analyzing Large-Scale Biological Data Sets. PLoS ONE, 2007, 2, e718.	1.1	2,236
3	Expression Profile Matrix of Arabidopsis Transcription Factor Genes Suggests Their Putative Functions in Response to Environmental Stresses[W]. Plant Cell, 2002, 14, 559-574.	3.1	849
4	The transcriptional landscape of polyploid wheat. Science, 2018, 361, .	6.0	768
5	The Botany Array Resource: e-Northerns, Expression Angling, and promoter analyses. Plant Journal, 2005, 43, 153-163.	2.8	707
6	The developmental dynamics of the maize leaf transcriptome. Nature Genetics, 2010, 42, 1060-1067.	9.4	660
7	Coâ€expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant, Cell and Environment, 2009, 32, 1633-1651.	2.8	480
8	Expansion and Diversification of the <i>Populus</i> R2R3-MYB Family of Transcription Factors Â. Plant Physiology, 2009, 149, 981-993.	2.3	450
9	ePlant: Visualizing and Exploring Multiple Levels of Data for Hypothesis Generation in Plant Biology. Plant Cell, 2017, 29, 1806-1821.	3.1	316
10	A Predicted Interactome for Arabidopsis. Plant Physiology, 2007, 145, 317-329.	2.3	285
11	Nextâ€generation mapping of Arabidopsis genes. Plant Journal, 2011, 67, 715-725.	2.8	284
12	An extracellular network of Arabidopsis leucine-rich repeat receptor kinases. Nature, 2018, 553, 342-346.	13.7	241
13	Comparative analyses of C4 and C3 photosynthesis in developing leaves of maize and rice. Nature Biotechnology, 2014, 32, 1158-1165.	9.4	228
14	Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9709-9714.	3.3	210
15	50Âyears of Arabidopsis research: highlights and future directions. New Phytologist, 2016, 209, 921-944.	3.5	186
16	AtMetExpress Development: A Phytochemical Atlas of Arabidopsis Development Â. Plant Physiology, 2010, 152, 566-578.	2.3	161
17	High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. Plant Cell, 2019, 31, 974-992.	3.1	141
18	Gene Expression Phenotypes of Arabidopsis Associated with Sensitivity to Low Temperatures. Plant Physiology, 2003, 132, 893-906.	2.3	135

#	Article	IF	CITATIONS
19	Transcriptional control of nutrient partitioning during rice grain filling. Plant Biotechnology Journal, 2002, 1, 59-70.	4.1	131
20	Cloning and sequence comparison of the mouse, human, and chickenengrailed genes reveal potential functional domains and regulatory regions. Genesis, 1992, 13, 345-358.	3.1	124
21	Genotype and time of day shape the <i>Populus</i> drought response. Plant Journal, 2009, 60, 703-715.	2.8	123
22	Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways. Plant Cell, 2015, 27, tpc.15.00632.	3.1	116
23	An updated gene atlas for maize reveals organâ€specific and stressâ€induced genes. Plant Journal, 2019, 97, 1154-1167.	2.8	114
24	A Mesoscale Abscisic Acid Hormone Interactome Reveals a Dynamic Signaling Landscape in Arabidopsis. Developmental Cell, 2014, 29, 360-372.	3.1	109
25	Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in <i>Brachypodium distachyon</i> . New Phytologist, 2017, 215, 1009-1025.	3.5	108
26	Elucidating the Germination Transcriptional Program Using Small Molecules Â. Plant Physiology, 2008, 147, 143-155.	2.3	104
27	BAR expressolog identification: expression profile similarity ranking of homologous genes in plant species. Plant Journal, 2012, 71, 1038-1050.	2.8	102
28	Web-Queryable Large-Scale Data Sets for Hypothesis Generation in Plant Biology. Plant Cell, 2009, 21, 1034-1051.	3.1	101
29	The Re-Establishment of Desiccation Tolerance in Germinated Arabidopsis thaliana Seeds and Its Associated Transcriptome. PLoS ONE, 2011, 6, e29123.	1.1	100
30	A gene expression map of shoot domains reveals regulatory mechanisms. Nature Communications, 2019, 10, 141.	5.8	96
31	ccNET: Database of co-expression networks with functional modules for diploid and polyploid <i>Gossypium</i> . Nucleic Acids Research, 2017, 45, D1090-D1099.	6.5	89
32	Embryogenesis: Pattern Formation from a Single Cell. The Arabidopsis Book, 2009, 7, e0126.	0.5	85
33	Potato guard cells respond to drying soil by a complex change in the expression of genes related to carbon metabolism and turgor regulation. Plant Journal, 1997, 11, 871-882.	2.8	83
34	Analysis of Gene Expression Patterns during Seed Coat Development in Arabidopsis. Molecular Plant, 2011, 4, 1074-1091.	3.9	83
35	Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in <i><scp>WUSCHEL</scp></i> â€dependent conversion of lateral root primordia into shoot meristems. Plant Journal, 2013, 73, 798-813.	2.8	80
36	New <scp>BAR</scp> tools for mining expression data and exploring <i>Cis</i> â€elements in <i>Arabidopsis thaliana</i> . Plant Journal, 2016, 88, 490-504.	2.8	75

#	Article	IF	CITATIONS
37	Changes in stomatal function and water use efficiency in potato plants with altered sucrolytic activity. Plant, Cell and Environment, 2012, 35, 747-759.	2.8	65
38	A Comprehensive Expression Analysis of the Arabidopsis Proline-rich Extensin-like Receptor Kinase Gene Family using Bioinformatic and Experimental Approaches. Plant and Cell Physiology, 2004, 45, 1875-1881.	1.5	63
39	The developmental transcriptome atlas of the biofuel crop <i>Camelina sativa</i> . Plant Journal, 2016, 88, 879-894.	2.8	60
40	Transcriptomics at Maize Embryo/Endosperm Interfaces Identifies a Transcriptionally Distinct Endosperm Subdomain Adjacent to the Embryo Scutellum. Plant Cell, 2020, 32, 833-852.	3.1	60
41	Regulation of Cell Type-Specific Immunity Networks in Arabidopsis Roots. Plant Cell, 2020, 32, 2742-2762.	3.1	59
42	The Transcriptional Landscape of Polyploid Wheats and Their Diploid Ancestors during Embryogenesis and Grain Development. Plant Cell, 2019, 31, 2888-2911.	3.1	57
43	Innovation, conservation, and repurposing of gene function in root cell type development. Cell, 2021, 184, 3333-3348.e19.	13.5	48
44	Forward and reverse genetics to identify genes involved in the ageâ€related resistance response in <i>Arabidopsis thaliana</i> . Molecular Plant Pathology, 2009, 10, 621-634.	2.0	46
45	Tung Tree (Vernicia fordii) Genome Provides A Resource for Understanding Genome Evolution and Improved Oil Production. Genomics, Proteomics and Bioinformatics, 2019, 17, 558-575.	3.0	43
46	ePlant and the 3D Data Display Initiative: Integrative Systems Biology on the World Wide Web. PLoS ONE, 2011, 6, e15237.	1.1	43
47	An â€~ <scp>eFP</scp> â€Seq Browser' for visualizing and exploring <scp>RNA</scp> sequencing data. Plant Journal, 2019, 100, 641-654.	2.8	41
48	MetaBasethe wiki-database of biological databases. Nucleic Acids Research, 2012, 40, D1250-D1254.	6.5	40
49	RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions. BMC Genomics, 2013, 14, 578.	1.2	40
50	Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in <i>Medicago truncatula</i> . Journal of Experimental Botany, 2017, 68, erw474.	2.4	40
51	Expression Atlas of <i>Selaginella moellendorffii</i> Provides Insights into the Evolution of Vasculature, Secondary Metabolism, and Roots. Plant Cell, 2020, 32, 853-870.	3.1	39
52	Characterization of pea chloroplastic carbonic anhydrase. Expression inEscherichia coli and site-directed mutagenesis. Plant Molecular Biology, 1993, 22, 937-943.	2.0	37
53	The Bio-Analytic Resource for Plant Biology. Methods in Molecular Biology, 2017, 1533, 119-148.	0.4	36
54	An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Communications Biology, 2020, 3, 145.	2.0	36

#	Article	IF	CITATIONS
55	Proteome-wide, Structure-Based Prediction of Protein-Protein Interactions/New Molecular Interactions Viewer. Plant Physiology, 2019, 179, 1893-1907.	2.3	34
56	Transcriptional landscapes of floral meristems in barley. Science Advances, 2021, 7, .	4.7	33
57	Multiple Horizontal Gene Transfer Events and Domain Fusions Have Created Novel Regulatory and Metabolic Networks in the Oomycete Genome. PLoS ONE, 2009, 4, e6133.	1.1	32
58	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	2.8	31
59	Functional annotation of the Arabidopsis P450 superfamily based on large-scale co-expression analysis. Biochemical Society Transactions, 2006, 34, 1192-1198.	1.6	30
60	Araport Lives: An Updated Framework for Arabidopsis Bioinformatics. Plant Cell, 2020, 32, 2683-2686.	3.1	28
61	Systems approaches to understanding cell signaling and gene regulation. Current Opinion in Plant Biology, 2004, 7, 605-609.	3.5	27
62	Polymerization of Glucans by Enzymatically Active Membranes. Biotechnology Progress, 2002, 18, 964-968.	1.3	24
63	Correlation networks visualization. Frontiers in Plant Science, 2012, 3, 240.	1.7	24
64	Regulation of Root Angle and Gravitropism. G3: Genes, Genomes, Genetics, 2018, 8, 3841-3855.	0.8	24
65	Transcriptional responses to low temperature and their regulation in Arabidopsis. Canadian Journal of Botany, 2003, 81, 1168-1174.	1.2	22
66	Developmental transcriptional profiling reveals key insights into <scp>T</scp> riticeae reproductive development. Plant Journal, 2013, 74, 971-988.	2.8	22
67	BlastDigester – a web-based program for efficient CAPS marker design. Trends in Genetics, 2004, 20, 280-283.	2.9	20
68	Complexity and specificity of the maize (Zea mays L.) root hair transcriptome. Journal of Experimental Botany, 2017, 68, 2175-2185.	2.4	19
69	A gene expression atlas for kiwifruit (Actinidia chinensis) and network analysis of transcription factors. BMC Plant Biology, 2021, 21, 121.	1.6	18
70	An Arabidopsis lipid map reveals differences between tissues and dynamic changes throughout development. Plant Journal, 2021, 107, 287-302.	2.8	18
71	The Bio-Analytic Resource: Data visualization and analytic tools for multiple levels of plant biology. Current Plant Biology, 2016, 7-8, 2-5.	2.3	17
72	Map of physical interactions between extracellular domains of Arabidopsis leucine-rich repeat receptor kinases. Scientific Data, 2019, 6, 190025.	2.4	17

#	Article	IF	CITATIONS
73	Evolutionary divergence in embryo and seed coat development of U's Triangle <i>Brassica</i> species illustrated by a spatiotemporal transcriptome atlas. New Phytologist, 2022, 233, 30-51.	3.5	16
74	Gene co-expression analysis of tomato seed maturation reveals tissue-specific regulatory networks and hubs associated with the acquisition of desiccation tolerance and seed vigour. BMC Plant Biology, 2021, 21, 124.	1.6	15
75	Extreme breeding: Leveraging genomics for crop improvement. Journal of the Science of Food and Agriculture, 2007, 87, 925-929.	1.7	14
76	New Insights into Dehalococcoides mccartyi Metabolism from a Reconstructed Metabolic Network-Based Systems-Level Analysis of D. mccartyi Transcriptomes. PLoS ONE, 2014, 9, e94808.	1.1	14
77	Arabidopsis bioinformatics resources: The current state, challenges, and priorities for the future. Plant Direct, 2019, 3, e00109.	0.8	14
78	A comparative genomic analysis of ESTs from Ustilago maydis. Functional and Integrative Genomics, 2004, 4, 207-18.	1.4	13
79	Current status of the multinational Arabidopsis community. Plant Direct, 2020, 4, e00248.	0.8	13
80	The red flower wintersweet genome provides insights into the evolution of magnoliids and the molecular mechanism for tepal color development. Plant Journal, 2021, 108, 1662-1678.	2.8	12
81	The Next Generation of Training for Arabidopsis Researchers: Bioinformatics and Quantitative Biology. Plant Physiology, 2017, 175, 1499-1509.	2.3	11
82	Light-responsive expression atlas reveals the effects of light quality and intensity in Kalanchoë fedtschenkoi, a plant with crassulacean acid metabolism. GigaScience, 2020, 9, .	3.3	11
83	Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell, 2021, 33, 832-845.	3.1	11
84	Sequence analysis and regulation of expression of a gene coding for carbonic anhydrase in Chlamydomonas reinhardtii. Canadian Journal of Botany, 1991, 69, 1097-1102.	1.2	10
85	A Human "eFP" Browser for Generating Gene Expression Anatograms. PLoS ONE, 2016, 11, e0150982.	1.1	10
86	Arabidopsis bioinformatics: tools and strategies. Plant Journal, 2021, 108, 1585-1596.	2.8	9
87	Gene Slider: sequence logo interactive data-visualization for education and research. Bioinformatics, 2016, 32, 3670-3672.	1.8	8
88	Elevated tyrosine results in the cytosolic retention of 3â€deoxyâ€ <scp>d</scp> â€arabinoâ€heptulosonate 7â€phosphate synthase in <i>Arabidopsis thaliana</i> . Plant Journal, 2022, 109, 789-803.	2.8	7
89	Bioinformatic Tools in Arabidopsis Research. Methods in Molecular Biology, 2014, 1062, 97-136.	0.4	6
90	Analyses of Protein Interaction Networks Using Computational Tools. Methods in Molecular Biology, 2018, 1794, 97-117.	0.4	6

#	Article	IF	CITATIONS
91	Editorial: Resistance to Salinity and Water Scarcity in Higher Plants. Insights From Extremophiles and Stress-Adapted Plants: Tools, Discoveries and Future Prospects. Frontiers in Plant Science, 2019, 10, 373.	1.7	6
92	Gene Expression Analyses for Elucidating Mechanisms of Hormonal Action in Plants. Methods in Molecular Biology, 2009, 495, 21-37.	0.4	4
93	Topo-phylogeny: Visualizing evolutionary relationships on a topographic landscape. PLoS ONE, 2017, 12, e0175895.	1.1	4
94	Bioinformatic Tools in Arabidopsis Research. Methods in Molecular Biology, 2021, 2200, 25-89.	0.4	4
95	Bioinformatics Tools to Discover Co-Expressed Genes in Plants. , 0, , 307-335.		1
96	Seed Bioinformatics. Methods in Molecular Biology, 2011, 773, 403-419.	0.4	1
97	First Plant Cell Atlas symposium report. Plant Direct, 2022, 6, .	0.8	1
98	Developments in plant and animal genome research. Journal of the Science of Food and Agriculture, 2004, 84, 743-744.	1.7	0
99	An Evaluation of Interaction Methods for Controlling RSVP Displays in Visual Search Tasks. , 2016, , .		Ο