Isabelle M Dixon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263783/publications.pdf

Version: 2024-02-01

42 papers 2,616 citations

28 h-index

254106 43 g-index

47 all docs

47 docs citations

47 times ranked

2685 citing authors

#	Article	IF	CITATIONS
1	Photoinduced Ligand Exchange Dynamics of a Polypyridyl Ruthenium Complex in Aqueous Solution. Journal of Physical Chemistry Letters, 2021, 12, 7278-7284.	2.1	6
2	Theoretical Study of the Full Photosolvolysis Mechanism of [Ru(bpy) ₃] ²⁺ : Providing a General Mechanistic Roadmap for the Photochemistry of [Ru(N^N) ₃] ²⁺ -Type Complexes toward Both Cis and Trans Photoproducts. Inorganic Chemistry, 2020, 59, 14679-14695.	1.9	27
3	On the Spin-State Dependence of Redox Potentials of Spin Crossover Complexes. Inorganic Chemistry, 2020, 59, 18402-18406.	1.9	6
4	On the Possible Coordination on a 3MC State Itself? Mechanistic Investigation Using DFT-Based Methods. Inorganics, 2020, 8, 15.	1.2	4
5	Recent progress in ligand photorelease reaction mechanisms: Theoretical insights focusing on Ru(II) 3MC states. Coordination Chemistry Reviews, 2020, 408, 213184.	9.5	54
6	Unravelling the Mechanism of Excited-State Interligand Energy Transfer and the Engineering of Dual Emission in [Ir(C ^{â^§} N) ₂ (N ^{â^§} N)] ⁺ Complexes. Inorganic Chemistry, 2020, 59, 1785-1803.	1.9	33
7	Exploration of Uncharted ³ PES Territory for [Ru(bpy) ₃] ²⁺ : A New ³ MC Minimum Prone to Ligand Loss Photochemistry. Inorganic Chemistry, 2018, 57, 3192-3196.	1.9	30
8	DFT rationalization of the room-temperature luminescence properties of Ru(bpy) 3 2+ and Ru(tpy) 2 2+ : 3MLCT–3MC minimum energy path from NEB calculations and emission spectra from VRES calculations. Theoretical Chemistry Accounts, 2018, 137, 1.	0.5	28
9	Linear and Third-Order Nonlinear Optical Properties of Fe(Î- ⁵ -C ₅ Me ₅)(κ ² -dppe)- and <i>trans</i> -Ru(κ ² -dppe) ₂ -Alkynyl Complexes Containing 2-Fluorenyl End Groups. Organometallics. 2018. 37. 2245-2262.	1.1	17
10	Theoretical illumination of highly original photoreactive ³ MC states and the mechanism of the photochemistry of Ru(<scp>ii</scp>) tris(bidentate) complexes. Physical Chemistry Chemical Physics, 2017, 19, 27765-27778.	1.3	30
11	Linkage Photoisomerization Mechanism in a Photochromic Ruthenium Nitrosyl Complex: New Insights from an MS-CASPT2 Study. Journal of Chemical Theory and Computation, 2017, 13, 6120-6130.	2.3	33
12	A Theoretical Study of the N to O Linkage Photoisomerization Efficiency in a Series of Ruthenium Mononitrosyl Complexes. Molecules, 2017, 22, 1667.	1.7	8
13	Computational Estimate of the Photophysical Capabilities of Four Series of Organometallic Iron(II) Complexes. Inorganic Chemistry, 2016, 55, 5089-5091.	1.9	24
14	Pivotal Role of a Pentacoordinate ³ MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study. Inorganic Chemistry, 2016, 55, 4448-4456.	1.9	36
15	Is photoisomerization required for NO photorelease in ruthenium nitrosyl complexes?. Journal of Molecular Modeling, 2016, 22, 284.	0.8	42
16	Reversing the relative ³ MLCTâ€" ³ MC order in Fe(<scp>ii</scp>) complexes using cyclometallating ligands: a computational study aiming at luminescent Fe(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 13498-13503.	1.6	52
17	Establishing the Two-Photon Linkage Isomerization Mechanism in the Nitrosyl Complex <i>trans</i> -[RuCl(NO)(py) ₄] ²⁺ by DFT and TDDFT. Inorganic Chemistry, 2015, 54, 8310-8318.	1.9	37
18	Probing the photophysical capability of mono and bis(cyclometallated) Fe(ii) polypyridine complexes using inexpensive ground state DFT. Dalton Transactions, 2014, 43, 15898-15905.	1.6	42

#	Article	IF	CITATIONS
19	Unravelling the S → O Linkage Photoisomerization Mechanisms in <i>cis</i> - and <i>trans</i> -[Ru(bpy) ₂ (DMSO) ₂] ²⁺ Using Density Functional Theory. Inorganic Chemistry, 2014, 53, 6752-6760.	1.9	32
20	The (N ₄ C ₂) ^{2â€"} Donor Set as Promising Motif for Bis(tridentate) Iron(II) Photoactive Compounds. Inorganic Chemistry, 2013, 52, 13369-13374.	1.9	51
21	Can a functionalized phosphineligand promote room temperature luminescence of the [Ru(bpy)(tpy)]2+core?. Chemical Communications, 2012, 48, 741-743.	2.2	29
22	Adiabatic Versus Nonadiabatic Photoisomerization in Photochromic Ruthenium Sulfoxide Complexes: A Mechanistic Picture from Density Functional Theory Calculations Journal of the American Chemical Society, 2011, 133, 9172-9174.	6.6	51
23	Bridging the Gap: Making the Link in Mechanically Interlocked Chiral Molecules. Angewandte Chemie - International Edition, 2010, 49, 8792-8794.	7.2	6
24	Interaction of Cationic Nickel and Manganese Porphyrins with the Minor Groove of DNA. Inorganic Chemistry, 2010, 49, 8558-8567.	1.9	42
25	Electronic peculiarities of the excited states of [RuN5C]+vs. [RuN6]2+ polypyridine complexes: insight from theory. Dalton Transactions, 2010, 39, 10959.	1.6	25
26	Luminescent ruthenium–polypyridine complexes & amp; phosphorus ligands: anything but a simple story. Chemical Society Reviews, 2009, 38, 1621.	18.7	53
27	Broad HOMO–LUMO gap tuning through the coordination of a single phosphine, aminophosphine or phosphite onto a Ru(tpy)(bpy)2+ core. Dalton Transactions, 2008, , 5627.	1.6	27
28	A G-Quadruplex Ligand with 10000-Fold Selectivity over Duplex DNA. Journal of the American Chemical Society, 2007, 129, 1502-1503.	6.6	188
29	X-ray structure, redox and spectroscopic properties of ruthenium phosphine complexes [Ru(tpy)(bpy)(PPh3)]2+ and [Ru(tpy)(bpy)(PCy3)]2+. Inorganica Chimica Acta, 2007, 360, 1235-1239.	1.2	13
30	Porphyrin Derivatives for Telomere Binding and Telomerase Inhibition. ChemBioChem, 2005, 6, 123-132.	1.3	120
31	Synthesis of One-Dimensional Bis-Porphyrinic Compounds with a Transition Metal Complex as Bridging Unit. ChemInform, 2005, 36, no.	0.1	0
32	Synthesis of one-dimensional bis-porphyrinic compounds with a transition metal complex as bridging unit. Journal of Porphyrins and Phthalocyanines, 2004, 08, 82-92.	0.4	2
33	Dyads Containing Iridium(III) Bis-terpyridine as Photoactive Center: Synthesis and Electron Transfer Study. Inorganic Chemistry, 2004, 43, 3057-3066.	1.9	69
34	Switching of Electron- to Energy-Transfer by Selective Excitation of Different Chromophores in Arrays Based on Porphyrins and a Polypyridyl Iridium Complex. Journal of Physical Chemistry B, 2002, 106, 6663-6671.	1,2	57
35	Porphyrinic Dyads and Triads Assembled around Iridium(III) Bis-terpyridine:Â Photoinduced Electron Transfer Processes. Inorganic Chemistry, 2001, 40, 5507-5517.	1.9	94
36	Synthesis and properties of diads based on tetra-aryl porphyrins and ruthenium bis-terpyridine-type complexes. Journal of Porphyrins and Phthalocyanines, 2001, 05, 600-607.	0.4	28

#	Article	IF	CITATIONS
37	Charge Separation in a Molecular Triad Consisting of an Iridium(III) – bis-terpy Central Core and Porphyrins as Terminal Electron Donor and Acceptor Groups. Angewandte Chemie - International Edition, 2000, 39, 1292-1295.	7.2	78
38	A Zn(ii) porphyrin–Ir(iii) bis-terpyridine–Au(iii) porphyrin triad with a charge-separated state in the microsecond range. Chemical Communications, 2000, , 2479-2480.	2.2	48
39	A family of luminescent coordination compounds: iridium(iii) polyimine complexes. Chemical Society Reviews, 2000, 29, 385-391.	18.7	344
40	Photoinduced processes in multicomponent arrays containing transition metal complexes. Coordination Chemistry Reviews, 1999, 190-192, 671-682.	9.5	118
41	Integration of Logic Functions and Sequential Operation of Gates at the Molecular-Scale. Journal of the American Chemical Society, 1999, 121, 1393-1394.	6.6	352
42	Synthesis and Photophysical Properties of Iridium(III) Bisterpyridine and Its Homologues:  a Family of Complexes with a Long-Lived Excited State. Journal of the American Chemical Society, 1999, 121, 5009-5016.	6.6	265