List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2637826/publications.pdf Version: 2024-02-01

<u> Снинии Сим</u>

#	Article	IF	CITATIONS
1	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.	13.7	817
2	Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 2013, 3, .	3.3	719
3	The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment. Carbon, 2008, 46, 196-205.	10.3	494
4	Highâ€Performance Reversible Aqueous Znâ€lon Battery Based on Porous MnO <i>_x</i> Nanorods Coated by MOFâ€Derived Nâ€Doped Carbon. Advanced Energy Materials, 2018, 8, 1801445.	19.5	430
5	A Highly Durable Platinum Nanocatalyst for Proton Exchange Membrane Fuel Cells: Multiarmed Starlike Nanowire Single Crystal. Angewandte Chemie - International Edition, 2011, 50, 422-426.	13.8	344
6	Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Research, 2013, 23, 201-212.	12.0	324
7	Controlled Growth of Pt Nanowires on Carbon Nanospheres and Their Enhanced Performance as Electrocatalysts in PEM Fuel Cells. Advanced Materials, 2008, 20, 3900-3904.	21.0	318
8	A specific demetalation of Fe–N ₄ catalytic sites in the micropores of NC_Ar + NH ₃ is at the origin of the initial activity loss of the highly active Fe/N/C catalyst used for the reduction of oxygen in PEM fuel cells. Energy and Environmental Science, 2018, 11, 365-382.	30.8	280
9	Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders. Chemical Physics Letters, 2003, 376, 103-107.	2.6	238
10	Template―and Surfactantâ€free Room Temperature Synthesis of Selfâ€Assembled 3D Pt Nanoflowers from Singleâ€Crystal Nanowires. Advanced Materials, 2008, 20, 571-574.	21.0	232
11	Is iron involved in the lack of stability of Fe/N/C electrocatalysts used to reduce oxygen at the cathode of PEM fuel cells?. Nano Energy, 2016, 29, 111-125.	16.0	232
12	Noble metals-TiO2 nanocomposites: From fundamental mechanisms to photocatalysis, surface enhanced Raman scattering and antibacterial applications. Applied Materials Today, 2018, 11, 82-135.	4.3	231
13	Nanoporous Alâ€Ni oâ€ŀrâ€Mo Highâ€Entropy Alloy for Recordâ€High Water Splitting Activity in Acidic Environments. Small, 2019, 15, e1904180.	10.0	230
14	Noble Metal-Free Nanoporous High-Entropy Alloys as Highly Efficient Electrocatalysts for Oxygen Evolution Reaction. , 2019, 1, 526-533.		229
15	Nanoporous high-entropy alloys for highly stable and efficient catalysts. Journal of Materials Chemistry A, 2019, 7, 6499-6506.	10.3	215
16	The New Graphene Family Materials: Synthesis and Applications in Oxygen Reduction Reaction. Catalysts, 2017, 7, 1.	3.5	201
17	Advanced Phosphorusâ€Based Materials for Lithium/Sodiumâ€Ion Batteries: Recent Developments and Future Perspectives. Advanced Energy Materials, 2018, 8, 1703058.	19.5	197
18	Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions. Catalysts, 2015, 5, 1574-1602.	3.5	183

#	Article	IF	CITATIONS
19	Rational design of multifunctional air electrodes for rechargeable Zn–Air batteries: Recent progress and future perspectives. Energy Storage Materials, 2019, 21, 253-286.	18.0	171
20	Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy, 2018, 50, 756-765.	16.0	170
21	Stabilizing lithium metal anode by octaphenyl polyoxyethylene-lithium complexation. Nature Communications, 2020, 11, 643.	12.8	161
22	Single-Atom Catalysts for Electrochemical Hydrogen Evolution Reaction: Recent Advances and Future Perspectives. Nano-Micro Letters, 2020, 12, 21.	27.0	159
23	Synthesis and optical properties of S-doped ZnO nanowires. Applied Physics Letters, 2003, 82, 4791-4793.	3.3	154
24	Metal-organic framework derived carbon materials for electrocatalytic oxygen reactions: Recent progress and future perspectives. Carbon, 2020, 156, 77-92.	10.3	149
25	Ultra-long life rechargeable zinc-air battery based on high-performance trimetallic nitride and NCNT hybrid bifunctional electrocatalysts. Nano Energy, 2019, 61, 86-95.	16.0	134
26	Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Advanced Science, 2020, 7, 1901614.	11.2	133
27	Oxygen reduction to hydrogen peroxide on Fe3O4 nanoparticles supported on Printex carbon and Graphene. Electrochimica Acta, 2015, 162, 263-270.	5.2	132
28	Cellulose Nanofibers/Reduced Graphene Oxide/Polypyrrole Aerogel Electrodes for High-Capacitance Flexible All-Solid-State Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 11175-11185.	6.7	127
29	Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis. Applied Surface Science, 2020, 515, 146059.	6.1	126
30	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie - International Edition, 2021, 60, 11481-11486.	13.8	124
31	Chemical Structure of Nitrogen-Doped Graphene with Single Platinum Atoms and Atomic Clusters as a Platform for the PEMFC Electrode. Journal of Physical Chemistry C, 2014, 118, 3890-3900.	3.1	121
32	Electrochemical synthesis of copper nanowires. Journal of Physics Condensed Matter, 2002, 14, 355-363.	1.8	119
33	Direct Growth of Singleâ€Crystal Pt Nanowires on Sn@CNT Nanocable: 3D Electrodes for Highly Active Electrocatalysts. Chemistry - A European Journal, 2010, 16, 829-835.	3.3	117
34	Selfâ€Templated Hierarchically Porous Carbon Nanorods Embedded with Atomic Feâ€N ₄ Active Sites as Efficient Oxygen Reduction Electrocatalysts in Znâ€Air Batteries. Advanced Functional Materials, 2021, 31, 2008085.	14.9	117
35	Atomically Dispersed Transition Metal-Nitrogen-Carbon Bifunctional Oxygen Electrocatalysts for Zinc-Air Batteries: Recent Advances and Future Perspectives. Nano-Micro Letters, 2022, 14, 36.	27.0	117
36	Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy, 2017, 31, 441-449.	16.0	116

#	Article	IF	CITATIONS
37	Indiscrete metal/metal-N-C synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Applied Catalysis B: Environmental, 2020, 272, 118967.	20.2	110
38	Accurate Control of Initial Coulombic Efficiency for Lithiumâ€rich Manganeseâ€based Layered Oxides by Surface Multicomponent Integration. Angewandte Chemie - International Edition, 2020, 59, 23061-23066.	13.8	107
39	Pyrolysis of Self-Assembled Iron Porphyrin on Carbon Black as Core/Shell Structured Electrocatalysts for Highly Efficient Oxygen Reduction in Both Alkaline and Acidic Medium. Advanced Functional Materials, 2017, 27, 1604356.	14.9	106
40	Self-Reconstruction of Co/Co ₂ P Heterojunctions Confined in N-Doped Carbon Nanotubes for Zinc–Air Flow Batteries. ACS Energy Letters, 0, , 1153-1161.	17.4	104
41	Electrosynthesis of Pd Single-Crystal Nanothorns and Their Application in the Oxidation of Formic Acid. Chemistry of Materials, 2008, 20, 6998-7002.	6.7	103
42	Wellâ€Defined Nanostructures for Electrochemical Energy Conversion and Storage. Advanced Energy Materials, 2021, 11, 2001537.	19.5	102
43	Synthesis and Characterization of Platinum Nanowire–Carbon Nanotube Heterostructures. Chemistry of Materials, 2007, 19, 6376-6378.	6.7	100
44	Ultrathin Carbon-Coated Pt/Carbon Nanotubes: A Highly Durable Electrocatalyst for Oxygen Reduction. Chemistry of Materials, 2017, 29, 9579-9587.	6.7	100
45	High-entropy alloy stabilized active Ir for highly efficient acidic oxygen evolution. Chemical Engineering Journal, 2022, 431, 133251.	12.7	100
46	Rechargeable Zn-ion batteries with high power and energy densities: a two-electron reaction pathway in birnessite MnO ₂ cathode materials. Journal of Materials Chemistry A, 2020, 8, 1975-1985.	10.3	99
47	Polymer gel electrolytes for flexible supercapacitors: Recent progress, challenges, and perspectives. Energy Storage Materials, 2021, 34, 320-355.	18.0	98
48	A General Carboxylateâ€Assisted Approach to Boost the ORR Performance of ZIFâ€Derived Fe/N/C Catalysts for Proton Exchange Membrane Fuel Cells. Advanced Functional Materials, 2021, 31, 2009645.	14.9	98
49	Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Applied Catalysis B: Environmental, 2020, 268, 118431.	20.2	96
50	Fe/Co Double Hydroxide/Oxide Nanoparticles on Nâ€Doped CNTs as Highly Efficient Electrocatalyst for Rechargeable Liquid and Quasiâ€Solidâ€State Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1801836.	19.5	94
51	Nearâ€Infrared, Heavy Metalâ€Free Colloidal "Giant―Core/Shell Quantum Dots. Advanced Energy Materials, 2018, 8, 1701432.	19.5	90
52	Synthesis of hierarchical platinum-palladium-copper nanodendrites for efficient methanol oxidation. Applied Catalysis B: Environmental, 2017, 211, 205-211.	20.2	89
53	Engineering interfacial structure in "Giant―PbS/CdS quantum dots for photoelectrochemical solar energy conversion. Nano Energy, 2016, 30, 531-541.	16.0	88
54	Morphology-Controlled Green Synthesis of Single Crystalline Silver Dendrites, Dendritic Flowers, and Rods, and Their Growth Mechanism. Crystal Growth and Design, 2011, 11, 2493-2499.	3.0	87

#	Article	IF	CITATIONS
55	Recent Developments of Planar Micro‣upercapacitors: Fabrication, Properties, and Applications. Advanced Functional Materials, 2020, 30, 1910000.	14.9	86
56	Porous Dendritic Platinum Nanotubes with Extremely High Activity and Stability for Oxygen Reduction Reaction. Scientific Reports, 2013, 3, 1526.	3.3	85
57	Graphiticâ€shell encapsulated FeNi alloy/nitride nanocrystals on biomassâ€derived Nâ€doped carbon as an efficient electrocatalyst for rechargeable Znâ€air battery. , 2021, 3, 176-187.		85
58	3D Porous Fe/N/C Spherical Nanostructures As High-Performance Electrocatalysts for Oxygen Reduction in Both Alkaline and Acidic Media. ACS Applied Materials & Interfaces, 2017, 9, 36944-36954.	8.0	83
59	Biomassâ€derived nonprecious metal catalysts for oxygen reduction reaction: The demandâ€oriented engineering of active sites and structures. , 2020, 2, 561-581.		83
60	Micro-Raman and infrared properties of SnO2 nanobelts synthesized from Sn and SiO2 powders. Journal of Applied Physics, 2003, 93, 1760-1763.	2.5	82
61	Porous hollow α-Fe ₂ O ₃ @TiO ₂ core–shell nanospheres for superior lithium/sodium storage capability. Journal of Materials Chemistry A, 2015, 3, 13807-13818.	10.3	82
62	SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Applied Catalysis B: Environmental, 2020, 264, 118523.	20.2	81
63	Bioinspired Synthesis of Hierarchical Porous Graphitic Carbon Spheres with Outstanding High-Rate Performance in Lithium-Ion Batteries. Chemistry of Materials, 2015, 27, 336-342.	6.7	80
64	Interface Engineering of NixSy@MnOxHy Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability. Nano-Micro Letters, 2022, 14, 120.	27.0	79
65	An active and robust Si-Fe/N/C catalyst derived from waste reed for oxygen reduction. Applied Catalysis B: Environmental, 2018, 237, 85-93.	20.2	78
66	Aqueous Znâ€based rechargeable batteries: Recent progress and future perspectives. InformaÄnÃ- Materiály, 2022, 4, .	17.3	77
67	Large-scale synthesis of SnO 2 nanobelts. Applied Physics A: Materials Science and Processing, 2003, 76, 287-289.	2.3	75
68	MoSe ₂ @CNT Core–Shell Nanostructures as Grain Promoters Featuring a Direct Li ₂ O ₂ Formation/Decomposition Catalytic Capability in Lithiumâ€Oxygen Batteries. Advanced Energy Materials, 2021, 11, 2003263.	19.5	75
69	Cobalt (II) oxide nanosheets with rich oxygen vacancies as highly efficient bifunctional catalysts for ultra-stable rechargeable Zn-air flow battery. Nano Energy, 2021, 79, 105409.	16.0	74
70	Zn nanobelts: a new quasi one-dimensional metal nanostructure. Chemical Communications, 2001, , 2632-2633.	4.1	71
71	A facile synthesis of Fe ₃ O ₄ nanoparticles/graphene for high-performance lithium/sodium-ion batteries. RSC Advances, 2016, 6, 16624-16633.	3.6	71
72	Rational design of novel nanostructured arrays based on porous AAO templates for electrochemical energy storage and conversion. Nano Energy, 2019, 55, 234-259.	16.0	71

#	Article	IF	CITATIONS
73	Cu Nanoclusters/FeN ₄ Amorphous Composites with Dual Active Sites in N-Doped Graphene for High-Performance Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 31340-31350.	8.0	71
74	Strategies for Engineering Highâ€Performance PGMâ€Free Catalysts toward Oxygen Reduction and Evolution Reactions. Small Methods, 2020, 4, 2000016.	8.6	70
75	RRDE experiments on noble-metal and noble-metal-free catalysts: Impact of loading on the activity and selectivity of oxygen reduction reaction in alkaline solution. Applied Catalysis B: Environmental, 2017, 206, 115-126.	20.2	68
76	Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH ₃ catalyst. Energy and Environmental Science, 2019, 12, 3015-3037.	30.8	66
77	Novel rare earth metal–doped one-dimensional TiO2 nanostructures: Fundamentals and multifunctional applications. Materials Today Sustainability, 2021, 13, 100066.	4.1	66
78	Ultrathin single crystal Pt nanowires grown on N-doped carbon nanotubes. Chemical Communications, 2009, , 7048.	4.1	63
79	Optoelectronic Properties in Nearâ€Infrared Colloidal Heterostructured Pyramidal "Giant―Core/Shell Quantum Dots. Advanced Science, 2018, 5, 1800656.	11.2	63
80	Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Applied Catalysis B: Environmental, 2019, 243, 86-93.	20.2	63
81	Flexible self-supported bi-metal electrode as a highly stable carbon- and binder-free cathode for large-scale solid-state zinc-air batteries. Applied Catalysis B: Environmental, 2020, 272, 118953.	20.2	62
82	Cobaltâ€Phthalocyanineâ€Derived Molecular Isolation Layer for Highly Stable Lithium Anode. Angewandte Chemie - International Edition, 2021, 60, 19852-19859.	13.8	62
83	A self-supported electrode as a high-performance binder- and carbon-free cathode for rechargeable hybrid zinc batteries. Energy Storage Materials, 2020, 24, 272-280.	18.0	61
84	Copper and gold recovery from CPU sockets by one-step slurry electrolysis. Journal of Cleaner Production, 2019, 213, 673-679.	9.3	60
85	Electrochemical synthesis of ordered CdTe nanowire arrays. Applied Physics A: Materials Science and Processing, 2003, 76, 537-539.	2.3	58
86	Template synthesis of Y-junction metal nanowires. Applied Physics A: Materials Science and Processing, 2002, 74, 403-406.	2.3	57
87	A novel and efficient ammonia leaching method for recycling waste lithium ion batteries. Journal of Cleaner Production, 2020, 251, 119665.	9.3	56
88	An Emerging Energy Storage System: Advanced Na–Se Batteries. ACS Nano, 2021, 15, 5876-5903.	14.6	56
89	Stacking faults created by the combined deflection of threading dislocations of Burgers vector c and c+a during the physical vapor transport growth of 4H–SiC. Applied Physics Letters, 2011, 98, .	3.3	55
90	Advances and perspectives on transitional metal layered oxides for potassium-ion battery. Energy Storage Materials, 2021, 34, 211-228.	18.0	55

#	Article	IF	CITATIONS
91	MnO _x â€Decorated Nickelâ€Iron Phosphides Nanosheets: Interface Modifications for Robust Overall Water Splitting at Ultraâ€High Current Densities. Small, 2022, 18, e2105803.	10.0	55
92	Litchi-like porous Fe/N/C spheres with atomically dispersed FeN _x promoted by sulfur as highly efficient oxygen electrocatalysts for Zn–air batteries. Journal of Materials Chemistry A, 2018, 6, 4605-4610.	10.3	54
93	TiSi ₂ O _x Coated N-Doped Carbon Nanotubes as Pt Catalyst Support for the Oxygen Reduction Reaction in PEMFCs. Journal of Physical Chemistry C, 2013, 117, 15457-15467.	3.1	53
94	Rational Design of Novel Catalysts with Atomic Layer Deposition for the Reduction of Carbon Dioxide. Advanced Energy Materials, 2019, 9, 1900889.	19.5	53
95	In Situ Fabrication of Electrospun Carbon Nanofibers–Binary Metal Sulfides as Freestanding Electrode for Electrocatalytic Water Splitting. Advanced Fiber Materials, 2021, 3, 117-127.	16.1	53
96	Phosphor Polymer Nanocomposite: ZnO:Tb ³⁺ Embedded Polystyrene Nanocomposite Thin Films for Solid-State Lighting Applications. ACS Applied Nano Materials, 2018, 1, 977-988.	5.0	51
97	Controlled Growth of SnO ₂ Hierarchical Nanostructures by a Multistep Thermal Vapor Deposition Process. Chemistry - A European Journal, 2007, 13, 9087-9092.	3.3	50
98	Laser-Induced Selective Metallization on Polymer Substrates Using Organocopper for Portable Electronics. ACS Applied Materials & amp; Interfaces, 2019, 11, 13714-13723.	8.0	50
99	Regenerative fuel cells: Recent progress, challenges, perspectives and their applications for space energy system. Applied Energy, 2021, 283, 116376.	10.1	50
100	General Synthesis of Transitionâ€Metalâ€Based Carbonâ€Group Intermetallic Catalysts for Efficient Electrocatalytic Hydrogen Evolution in Wide pH Range. Advanced Energy Materials, 2022, 12, .	19.5	50
101	Three-dimensional interconnected network few-layered MoS2/N, S co-doped graphene as anodes for enhanced reversible lithium and sodium storage. Electrochimica Acta, 2019, 293, 47-59.	5.2	49
102	Atomically Dispersed Fe-Co Bimetallic Catalysts for the Promoted Electroreduction of Carbon Dioxide. Nano-Micro Letters, 2022, 14, 25.	27.0	49
103	Controlled Growth and Optical Properties of One-Dimensional ZnO Nanostructures on SnO ₂ Nanobelts. Crystal Growth and Design, 2007, 7, 1988-1991.	3.0	47
104	Engineering of electrocatalyst/electrolyte interface for ambient ammonia synthesis. SusMat, 2021, 1, 150-173.	14.9	47
105	Nanostructured Metal Borides for Energyâ€Related Electrocatalysis: Recent Progress, Challenges, and Perspectives. Small Methods, 2021, 5, e2100699.	8.6	47
106	A Facile Route for the Self-Organized High-Density Decoration of Pt Nanoparticles on Carbon Nanotubes. Journal of Physical Chemistry C, 2008, 112, 11717-11721.	3.1	46
107	Three growth modes and mechanisms for highly structure-tunable SnO2 nanotube arrays of template-directed atomic layer deposition. Journal of Materials Chemistry, 2011, 21, 12321.	6.7	46
108	Highly Functional Bioinspired Fe/N/C Oxygen Reduction Reaction Catalysts: Structure-Regulating Oxygen Sorption. ACS Applied Materials & Amp; Interfaces, 2016, 8, 6464-6471.	8.0	46

#	Article	IF	CITATIONS
109	Chemical vapour deposition of graphene: layer control, the transfer process, characterisation, and related applications. International Reviews in Physical Chemistry, 2019, 38, 149-199.	2.3	46
110	Efficient solar-driven hydrogen generation using colloidal heterostructured quantum dots. Journal of Materials Chemistry A, 2019, 7, 14079-14088.	10.3	46
111	"Greenâ€ , gradient multi-shell CuInSe2/(CuInSexS1-x)5/CuInS2 quantum dots for photo-electrochemical hydrogen generation. Applied Catalysis B: Environmental, 2021, 280, 119402.	20.2	46
112	Nanostructured Cobaltâ€Based Electrocatalysts for CO ₂ Reduction: Recent Progress, Challenges, and Perspectives. Small, 2020, 16, e2004158.	10.0	45
113	2D SnSe Cathode Catalyst Featuring an Efficient Facetâ€Dependent Selective Li ₂ O ₂ Growth/Decomposition for Li–Oxygen Batteries. Advanced Energy Materials, 2022, 12, .	19.5	45
114	Identifying the descriptor governing NO oxidation on mullite Sm(Y, Tb, Gd,) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 2016, 6, 3971-3975.) 547 Td (l 4.1	Lu)Mn _{2 44}
115	Heterostructured quantum dot architectures for efficient and stable photoelectrochemical hydrogen production. Journal of Materials Chemistry A, 2018, 6, 6822-6829.	10.3	44
116	B-site modified photoferroic Cr ³⁺ -doped barium titanate nanoparticles: microwave-assisted hydrothermal synthesis, photocatalytic and electrochemical properties. RSC Advances, 2019, 9, 20806-20817.	3.6	44
117	Iron (II) phthalocyanine/N-doped graphene: A highly efficient non-precious metal catalyst for oxygen reduction. International Journal of Hydrogen Energy, 2019, 44, 18103-18114.	7.1	44
118	Interfacial engineering in colloidal "giant―quantum dots for high-performance photovoltaics. Nano Energy, 2019, 55, 377-388.	16.0	44
119	Morphology controllable growth of Pt nanoparticles/nanowires on carbon powders and its application as novel electro-catalyst for methanol oxidation. Nanoscale, 2011, 3, 5041.	5.6	43
120	Ferroelectric Fe–Cr Codoped BaTiO ₃ Nanoparticles for the Photocatalytic Oxidation of Azo Dyes. ACS Applied Nano Materials, 2019, 2, 2890-2901.	5.0	43
121	Efficient and stable photoelectrochemical hydrogen generation using optimized colloidal heterostructured quantum dots. Nano Energy, 2021, 79, 105416.	16.0	43
122	Y-branched Bi nanowires with metal–semiconductor junction behavior. Applied Physics Letters, 2004, 85, 967-969.	3.3	42
123	Nanocellulose-assisted synthesis of ultrafine Co nanoparticles-loaded bimodal micro-mesoporous N-rich carbon as bifunctional oxygen electrode for Zn-air batteries. Journal of Power Sources, 2020, 450, 227640.	7.8	42
124	Defect Electrocatalysts and Alkaline Electrolyte Membranes in Solidâ€5tate Zinc–Air Batteries: Recent Advances, Challenges, and Future Perspectives. Small Methods, 2021, 5, e2000868.	8.6	42
125	Ni/Mn and Al Dual Concentration-Gradients To Mitigate Voltage Decay and Capacity Fading of Li-Rich Layered Cathodes. ACS Energy Letters, 2021, 6, 2755-2764.	17.4	42
126	Nanostructured Mn2O3/Pt/CNTs selective electrode for oxygen reduction reaction and methanol tolerance in mixed-reactant membraneless micro-DMFC. Electrochimica Acta, 2019, 297, 230-239.	5.2	41

#	Article	IF	CITATIONS
127	Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: effects of surface functionalization and nitrogen-doping. Journal of Nanoparticle Research, 2011, 13, 1207-1218.	1.9	40
128	Epitaxial Bi ₂ FeCrO ₆ Multiferroic Thin-Film Photoanodes with Ultrathin p-Type NiO Layers for Improved Solar Water Oxidation. ACS Applied Materials & Interfaces, 2019, 11, 13185-13193.	8.0	40
129	Crack–tips enriched platinum–copper superlattice nanoflakes as highly efficient anode electrocatalysts for direct methanol fuel cells. Nanoscale, 2017, 9, 8918-8924.	5.6	39
130	Controlled synthesis of graphene via electrochemical route and its use as efficient metal-free catalyst for oxygen reduction. Applied Catalysis B: Environmental, 2019, 243, 373-380.	20.2	39
131	Copper extraction from waste printed circuit boards by glycine. Separation and Purification Technology, 2020, 253, 117463.	7.9	39
132	Synergistic Effect of Plasmonic Gold Nanoparticles Decorated Carbon Nanotubes in Quantum Dots/TiO ₂ for Optoelectronic Devices. Advanced Science, 2020, 7, 2001864.	11.2	39
133	N, P-Codoped Graphene Dots Supported on N-Doped 3D Graphene as Metal-Free Catalysts for Oxygen Reduction. ACS Applied Materials & Interfaces, 2021, 13, 30512-30523.	8.0	39
134	Preparation and characterization of oriented silica nanowires. Solid State Communications, 2003, 128, 287-290.	1.9	38
135	Rational design of carbon-based oxygen electrocatalysts for zinc–air batteries. Current Opinion in Electrochemistry, 2017, 4, 45-59.	4.8	38
136	Highly stable photoelectrochemical cells for hydrogen production using a SnO ₂ –TiO ₂ /quantum dot heterostructured photoanode. Nanoscale, 2018, 10, 15273-15284.	5.6	38
137	Emerging applications of atomic layer deposition for the rational design of novel nanostructures for surface-enhanced Raman scattering. Journal of Materials Chemistry C, 2019, 7, 1447-1471.	5.5	37
138	Transforming reed waste into a highly active metal-free catalyst for oxygen reduction reaction. Nano Energy, 2019, 62, 700-708.	16.0	37
139	Versatile Route To Fabricate Precious-Metal Phosphide Electrocatalyst for Acid-Stable Hydrogen Oxidation and Evolution Reactions. ACS Applied Materials & Interfaces, 2020, 12, 11737-11744.	8.0	37
140	Electrode Engineering by Atomic Layer Deposition for Sodiumâ€Ion Batteries: From Traditional to Advanced Batteries. Advanced Functional Materials, 2020, 30, 1906890.	14.9	36
141	Emerging applications of atomic layer deposition for lithium-sulfur and sodium-sulfur batteries. Energy Storage Materials, 2020, 26, 513-533.	18.0	36
142	PGM-Free Fe/N/C and Ultralow Loading Pt/C Hybrid Cathode Catalysts with Enhanced Stability and Activity in PEM Fuel Cells. ACS Applied Materials & amp; Interfaces, 2020, 12, 13739-13749.	8.0	36
143	Visible and Near-Infrared, Multiparametric, Ultrasensitive Nanothermometer Based on Dual-Emission Colloidal Quantum Dots. ACS Photonics, 2019, 6, 2479-2486.	6.6	35
144	Low-dimensional catalysts for oxygen reduction reaction. Progress in Natural Science: Materials International, 2020, 30, 787-795.	4.4	35

#	Article	IF	CITATIONS
145	Synthesis of SnO2nanostructures by carbothermal reduction of SnO2powder. Journal Physics D: Applied Physics, 2004, 37, 409-412.	2.8	34
146	Sox2 is translationally activated by eukaryotic initiation factor 4E in human glioma-initiating cells. Biochemical and Biophysical Research Communications, 2010, 397, 711-717.	2.1	34
147	Porous Carbon Membraneâ€Supported Atomically Dispersed Pyrroleâ€Type FeN ₄ as Active Sites for Electrochemical Hydrazine Oxidation Reaction. Small, 2020, 16, e2002203.	10.0	34
148	Plasma nitriding induced growth of Pt-nanowire arrays as high performance electrocatalysts for fuel cells. Scientific Reports, 2014, 4, 6439.	3.3	33
149	Aligned copper nanorod arrays for highly efficient generation of intense ultra-broadband THz pulses. Scientific Reports, 2017, 7, 40058.	3.3	32
150	Design, fabrication and performance of a mixed-reactant membraneless micro direct methanol fuel cell stack. Journal of Power Sources, 2017, 371, 10-17.	7.8	32
151	Multi-metallic catalysts for the electroreduction of carbon dioxide: Recent advances and perspectives. Renewable and Sustainable Energy Reviews, 2022, 155, 111922.	16.4	32
152	Development of Nb-Ti-Co alloy for high-performance hydrogen separating membrane. Journal of Membrane Science, 2018, 565, 411-424.	8.2	31
153	Incorporation of CeF3 on single-atom dispersed Fe/N/C with oxophilic interface as highly durable electrocatalyst for proton exchange membrane fuel cell. Journal of Catalysis, 2019, 374, 43-50.	6.2	31
154	Photoluminescence of ZnO nanoparticles loaded into porous anodic alumina hosts. Journal of Physics Condensed Matter, 2002, 14, 12651-12656.	1.8	30
155	Ultrasmall Nanoplatelets: The Ultimate Tuning of Optoelectronic Properties. Advanced Energy Materials, 2017, 7, 1602728.	19.5	30
156	Graphene‣upported Substoichiometric Sodium Tantalate as a Methanolâ€Tolerant, Nonâ€Nobleâ€Metal Catalyst for the Electroreduction of Oxygen. ChemCatChem, 2015, 7, 911-915.	3.7	29
157	Completely separating metals and nonmetals from waste printed circuit boards by slurry electrolysis. Separation and Purification Technology, 2018, 205, 302-307.	7.9	29
158	Effect of electrolyte reuse on metal recovery from waste CPU slots by slurry electrolysis. Waste Management, 2019, 95, 370-376.	7.4	29
159	Electronic Metal–Support Interaction Modulation of Singleâ€Atom Electrocatalysts for Rechargeable Zinc–Air Batteries. Small Methods, 2022, 6, e2100947.	8.6	29
160	Microscopy Study of the Growth Process and Structural Features of Closely Packed Silica Nanowires. Journal of Physical Chemistry B, 2003, 107, 13029-13032.	2.6	28
161	Defect Engineering of Carbonâ€based Electrocatalysts for Rechargeable Zincâ€air Batteries. Chemistry - an Asian Journal, 2020, 15, 3737-3751.	3.3	28
162	Electrocatalytic Oxygen Evolution Reaction in Acidic Conditions: Recent Progress and Perspectives. ChemSusChem, 2021, 14, 4636-4657.	6.8	28

#	Article	IF	CITATIONS
163	Formation of a Porous Platinum Nanoparticle Froth for Electrochemical Applications, Produced without Templates, Surfactants, or Stabilizers. Chemistry of Materials, 2008, 20, 4677-4681.	6.7	27
164	Stem-like nano-heterostructural MWCNTs/α-Fe2O3@TiO2 composite with high lithium storage capability. Journal of Alloys and Compounds, 2016, 684, 419-427.	5.5	27
165	Rare-earth metal oxide hybridized PtFe nanocrystals synthesized via microfluidic process for enhanced electrochemical catalytic performance. Electrochimica Acta, 2019, 299, 80-88.	5.2	27
166	Highly Stable and Active Pt/Nb-TiO ₂ Carbon-Free Electrocatalyst for Proton Exchange Membrane Fuel Cells. Journal of Nanotechnology, 2012, 2012, 1-8.	3.4	26
167	Exploiting a High-Performance "Double-Carbon―Structure Co9S8/GN Bifunctional Catalysts for Rechargeable Zn–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 38202-38210.	8.0	26
168	Design and engineering of graphene nanostructures as independent solar-driven photocatalysts for emerging applications in the field of energy and environment. Molecular Systems Design and Engineering, 2022, 7, 213-238.	3.4	26
169	Green synthesis of near infrared core/shell quantum dots for photocatalytic hydrogen production. Nanotechnology, 2016, 27, 495405.	2.6	25
170	Morphology controlled synthesis of SmMn2O5 nanocrystals via a surfactant-free route for Zn-air batteries. Journal of Power Sources, 2018, 396, 754-763.	7.8	25
171	Non-PGM Electrocatalysts for PEM Fuel Cells: Thermodynamic Stability and DFT Evaluation of Fluorinated FeN ₄ -Based ORR Catalysts. Journal of the Electrochemical Society, 2019, 166, F3277-F3286.	2.9	25
172	A semi-scaled experiment for metals separating and recovering from waste printed circuit boards by slurry electrolysis. Chemical Engineering Research and Design, 2021, 147, 37-44.	5.6	25
173	Inâ€Situ Silica Xerogel Assisted Facile Synthesis of Feâ€Nâ€C Catalysts with Dense Feâ€N <i>_x</i> Active Sites for Efficient Oxygen Reduction. Small, 2022, 18, e2104934.	10.0	25
174	Fabrication and evaluation of passive alkaline membraneless microfluidic DMFC. International Journal of Hydrogen Energy, 2017, 42, 21969-21975.	7.1	24
175	Plasmon enhanced upconverting core@triple-shell nanoparticles as recyclable panchromatic initiators (blue to infrared) for radical polymerization. Nanoscale Horizons, 2019, 4, 907-917.	8.0	24
176	Photocatalytic interlayer spacing adjustment of a graphene oxide/zinc oxide hybrid membrane for efficient water filtration. Desalination, 2020, 475, 114174.	8.2	24
177	Blue-light emission from amorphous SiO x nanoropes. Applied Physics A: Materials Science and Processing, 2002, 74, 831-833.	2.3	22
178	Basal plane dislocation multiplication via the Hopping Frank-Read source mechanism in 4H-SiC. Applied Physics Letters, 2012, 100, .	3.3	22
179	Response of soil microbial community structure to increased precipitation and nitrogen addition in a semiarid meadow steppe. European Journal of Soil Science, 2017, 68, 524-536.	3.9	22
180	Nanofiber-supported CuS nanoplatelets as high efficiency counter electrodes for quantum dot-based photoelectrochemical hydrogen production. Materials Chemistry Frontiers, 2017, 1, 65-72.	5.9	22

#	Article	IF	CITATIONS
181	Red phosphorus confined in N-doped multi-cavity mesoporous carbon for ultrahigh-performance sodium-ion batteries. Journal of Power Sources, 2020, 450, 227696.	7.8	22
182	Proton Exchange Membrane (PEM) Fuel Cells with Platinum Group Metal (PGM)-Free Cathode. Automotive Innovation, 2021, 4, 131-143.	5.1	22
183	Novel sinomenine derivative 1032 improves immune suppression in experimental autoimmune encephalomyelitis. Biochemical and Biophysical Research Communications, 2010, 391, 1093-1098.	2.1	21
184	Use of a bilayer platinum-silver cathode to selectively perform the oxygen reduction reaction in a high concentration mixed-reactant microfluidic direct ethanol fuel cell. International Journal of Hydrogen Energy, 2019, 44, 18372-18381.	7.1	21
185	Graphene oxide/cobalt-based nanohybrid electrodes for robust hydrogen generation. Applied Catalysis B: Environmental, 2019, 245, 167-176.	20.2	21
186	Engineering of a Low ost, Highly Active, and Durable Tantalate–Graphene Hybrid Electrocatalyst for Oxygen Reduction. Advanced Energy Materials, 2020, 10, 2000075.	19.5	21
187	Thermodynamically driven metal diffusion strategy for controlled synthesis of high-entropy alloy electrocatalysts. Chemical Communications, 2021, 57, 10027-10030.	4.1	21
188	Step-shaped bismuth nanowires with metal–semiconductor junction characteristics. Nanotechnology, 2006, 17, 1041-1045.	2.6	20
189	Near-Infrared Colloidal Manganese-Doped Quantum Dots: Photoluminescence Mechanism and Temperature Response. ACS Photonics, 2019, 6, 2421-2431.	6.6	20
190	Enhanced Photocurrent Generation in Protonâ€Irradiated "Giant―CdSe/CdS Core/Shell Quantum Dots. Advanced Functional Materials, 2019, 29, 1904501.	14.9	20
191	Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation. Applied Surface Science, 2020, 530, 147252.	6.1	20
192	Heterostructure design of Cu ₂ O/Cu ₂ S core/shell nanowires for solar-driven photothermal water vaporization towards desalination. Sustainable Energy and Fuels, 2020, 4, 6023-6029.	4.9	19
193	C F bonding in fluorinated N-Doped carbons. Applied Surface Science, 2022, 577, 151721.	6.1	19
194	Direct dimethyl ether fuel cells with low platinum-group-metal loading at anode: Investigations of operating temperatures and anode Pt/Ru ratios. Journal of Power Sources, 2019, 433, 126690.	7.8	18
195	LiFePO4-Graphene Composites as High-Performance Cathodes for Lithium-Ion Batteries: The Impact of Size and Morphology of Graphene. Materials, 2019, 12, 842.	2.9	18
196	Fe-N4 Doped Carbon Nanotube Cathode Catalyst for PEM Fuel Cells. ACS Applied Materials & Interfaces, 2021, 13, 48923-48933.	8.0	18
197	Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite. Journal of Colloid and Interface Science, 2010, 350, 16-21.	9.4	17
198	Controlled synthesis of near-infrared quantum dots for optoelectronic devices. Nanoscale, 2017, 9, 16843-16851.	5.6	17

#	Article	IF	CITATIONS
199	Ultraâ€High Initial Coulombic Efficiency Induced by Interface Engineering Enables Rapid, Stable Sodium Storage. Angewandte Chemie, 2021, 133, 11582-11587.	2.0	17
200	Large-Scale Aqueous Synthesis and Growth Mechanism of Single-Crystalline Metal Nanoscrolls at Room Temperature: The Case of Nickel. Chemistry of Materials, 2010, 22, 4721-4727.	6.7	16
201	Direct confirmation of confinement effects by NiO confined in helical SnO ₂ nanocoils and its application in sensors. Journal of Materials Chemistry A, 2022, 10, 2786-2794.	10.3	16
202	PtRu Alloy Nanoparticles. 2. Chemical and Electrochemical Surface Characterization for Methanol Oxidation. Journal of Physical Chemistry C, 2017, 121, 23120-23128.	3.1	15
203	Effect of ionic liquid [MIm]HSO4 on WPCB metal-enriched scraps refined by slurry electrolysis. Environmental Science and Pollution Research, 2019, 26, 33260-33268.	5.3	15
204	Cu/S-Occupation Bifunctional Oxygen Catalysts for Advanced Rechargeable Zinc–Air Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52836-52844.	8.0	15
205	Phosphorus-Doped Graphene Electrocatalysts for Oxygen Reduction Reaction. Nanomaterials, 2022, 12, 1141.	4.1	15
206	Highly-ordered microporous carbon nanospheres: a promising anode for high-performance sodium-ion batteries. RSC Advances, 2016, 6, 84149-84154.	3.6	14
207	Ultra-small colloidal heavy-metal-free nanoplatelets for efficient hydrogen generation. Applied Catalysis B: Environmental, 2019, 250, 234-241.	20.2	14
208	MoS2-supported on free-standing TiO2-nanotubes for efficient hydrogen evolution reaction. International Journal of Hydrogen Energy, 2020, 45, 4468-4480.	7.1	14
209	NiS2 nanosheet arrays on stainless steel foil as binder-free anode for high-power sodium-ion batteries. Rare Metals, 2022, 41, 1294-1303.	7.1	14
210	Nanocomposite-Decorated Filter Paper as a Twistable and Water-Tolerant Sensor for Selective Detection of 5 ppb–60 v/v% Ammonia. ACS Sensors, 2022, 7, 874-883.	7.8	14
211	Prospects of membraneless mixed-reactant microfluidic fuel cells: Evolution through numerical simulation. Renewable and Sustainable Energy Reviews, 2020, 134, 110045.	16.4	13
212	Particle size effect on the photocatalytic kinetics of barium titanate powders. Catalysis Science and Technology, 2020, 10, 6274-6284.	4.1	13
213	The Deep Understanding into the Promoted Carbon Dioxide Electroreduction of ZIFâ€8â€Derived Singleâ€Atom Catalysts by the Simple Grinding Process. Small Structures, 2022, 3, .	12.0	13
214	New Insight into the Conventional Replacement Reaction for the Largeâ€Scale Synthesis of Various Metal Nanostructures and their Formation Mechanism. Chemistry - A European Journal, 2010, 16, 10630-10634.	3.3	12
215	Controlled Growth/Patterning of Ni Nanohoneycombs on Various Desired Substrates. Langmuir, 2010, 26, 4346-4350.	3.5	12
216	Multiphase Nb–TiCo alloys: The significant impact of surface corrosion on the structural stability and hydrogen permeation behaviour. International Journal of Hydrogen Energy, 2019, 44, 16684-16697.	7.1	12

#	Article	IF	CITATIONS
217	Synthesis of high performing Cu0.31Ni0.69O/rGO hybrid for oxygen reduction reaction in alkaline medium. International Journal of Hydrogen Energy, 2019, 44, 13345-13353.	7.1	12
218	Isolated Palladium Atoms Dispersed on Silicoaluminophosphate-31 (SAPO-31) for the Semihydrogenation of Alkynes. ACS Applied Nano Materials, 2021, 4, 861-868.	5.0	11
219	Synthesis and optical absorption property of ordered macroporous titania film doped with Ag nanoparticles. Materials Letters, 2006, 60, 2586-2589.	2.6	10
220	Effect of acid-leaching on carbon-supported copper phthalocyanine tetrasulfonic acid tetrasodium salt (CuTSPc/C) for oxygen reduction reaction in alkaline electrolyte: active site studies. RSC Advances, 2015, 5, 50344-50352.	3.6	10
221	Polarization-independent two-dimensional diffraction metal-dielectric grating. Applied Physics Letters, 2018, 113, 041905.	3.3	10
222	A Lactate/Oxygen Biofuel Cell: The Coupled Lactate Oxidase Anode and PGM-Free Fe–N–C Cathode. ACS Applied Materials & Interfaces, 2019, 11, 42744-42750.	8.0	10
223	Cobaltâ€Phthalocyanineâ€Derived Molecular Isolation Layer for Highly Stable Lithium Anode. Angewandte Chemie, 2021, 133, 20005-20012.	2.0	10
224	Low-Cost, Air-Processed Quantum Dot Solar Cells via Diffusion-Controlled Synthesis. ACS Applied Materials & Interfaces, 2020, 12, 36301-36310.	8.0	9
225	Facile synthesis of Zr- and Ta-based catalysts for the oxygen reduction reaction. Chinese Journal of Catalysis, 2015, 36, 484-489.	14.0	8
226	Pt/TiSi _{<i>x</i>} -NCNT Novel Janus Nanostructure: A New Type of High-Performance Electrocatalyst. ACS Applied Materials & Interfaces, 2018, 10, 10771-10777.	8.0	8
227	Photochemical Synthesis of Radiate Titanium Oxide Microrods Arrays Supporting Platinum Nanoparticles for Photoassisted Electrooxidation of Methanol. Advanced Materials Interfaces, 2018, 5, 1800748.	3.7	8
228	Recent Progress on Novel Ag–TiO2 Nanocomposites for Antibacterial Applications. Nanotechnology in the Life Sciences, 2019, , 121-143.	0.6	8
229	Reduction-Responsive Sheddable Carbon Nanotubes Dispersed in Aqueous Solution. Macromolecular Rapid Communications, 2016, 37, 705-710.	3.9	7
230	Using aminopyrine as a nitrogen-enriched small molecule precursor to synthesize high-performing nitrogen doped mesoporous carbon for catalyzing oxygen reduction reaction. RSC Advances, 2017, 7, 669-677.	3.6	7
231	Nanostructured shrub-like bimetallic PtxRh100-x alloys grown on carbon paper for the oxidative removal of adsorbed carbon monoxide for ethanol fuel cells reaction. Electrochimica Acta, 2020, 355, 136823.	5.2	7
232	Reply to the â€~Comment on "Non-PGM electrocatalysts for PEM fuel cells: effect of fluorination on the activity and stability of a highly active NC_Ar + NH ₃ catalystâ€â€™ by Xi Yin, Edward F. Holby and Piotr Zelenay, <i>Energy Environ. Sci.</i> , 10.1039/D0EE02069A. Energy and Environmental Science, 2021, 14, 1034-1041.	30.8	7
233	Non-PGM Electrocatalysts for PEM Fuel Cells: Thermodynamic Stability of Potential ORR CoNx-C Electrocatalytic Sites. Journal of the Electrochemical Society, 2021, 168, 094502.	2.9	7
234	Non-PGM Electrocatalysts for PEM Fuel Cells: A DFT Study on the Effects of Fluorination of FeNx-Doped and N-Doped Carbon Catalysts. Molecules, 2021, 26, 7370.	3.8	7

#	Article	IF	CITATIONS
235	General Carbon-Supporting Strategy to Boost the Oxygen Reduction Activity of Zeolitic-Imidazolate-Framework-Derived Fe/N/Carbon Catalysts in Proton Exchange Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2022, 14, 30724-30734.	8.0	7
236	DFT and 2D-CA methods unravelling the mechanism of interfacial interaction between amino acids and Ca-montmorillonite. Applied Clay Science, 2019, 183, 105356.	5.2	6
237	Self-Assembly of Water-Soluble Clutathione Thiol-Capped n-Hematite–p–XZn-Ferrites (X = Mg, Mn, or) Tj ET	Qq] 1 0.7	784 <u>3</u> 14 rgBT
238	Competitive Adsorption of Uranyl and Toxic Trace Metal Ions at MFe2O4-montmorillonite (M = Mn, Fe,) Tj ETQc	0 0 0 rgB1	Г /Oyerlock 10
239	Graphene oxide/reduced graphene oxide films as protective barriers on lead against differential aeration corrosion induced by water drops. Nanoscale Advances, 2020, 2, 5412-5420.	4.6	5
240	Ultrafast Plasma Electron Dynamics: A Route to Terahertz Pulse Shaping. Physical Review Applied, 2020, 13, .	3.8	5
241	SYNTHESIS, RHEOLOGICAL BEHAVIOR, AND MECHANICAL PROPERTIES OF GRAFT-TYPE ACS RESIN. Polymer-Plastics Technology and Engineering, 2002, 41, 863-876.	1.9	5
242	Magnetoelastic Interactions at Surfaces and Interfaces. Materials Research Society Symposia Proceedings, 1991, 231, 485.	0.1	4
243	Structure and properties of TiCuN coatings by HCD assisted AIP. Surface Engineering, 2016, 32, 223-228.	2.2	4
244	Biosynthesized magnetite-perovskite (XFe2O4-BiFeO3) interfaces for toxic trace metal removal from aqueous solution. Ceramics International, 2018, 44, 21210-21220.	4.8	4
245	Two-Dimensional Protective Layers of MX ₃ to Stabilize Lithium and Sodium Metal Anodes. ACS Applied Energy Materials, 2021, 4, 8653-8659.	5.1	4
246	Morphology and mechanical properties of PA6/organoclay nanocomposites toughened by bulk rubber and core-shell rubber. Plastics, Rubber and Composites, 2015, 44, 339-344.	2.0	3
247	Plasma Synthesized Trilayered Rhodiumâ^'Platinumâ^'Tin Oxide Nanostructures with Enhanced Tolerance to CO Poisoning and High Electroactivity for Ethanol Oxidation. Energy Technology, 2021, 9, 2000949.	3.8	3
248	3D Graphene and Its Nanocomposites: From Synthesis to Multifunctional Applications. Carbon Nanostructures, 2019, , 363-388.	0.1	3
249	Multi-factor principle for electrolyte additive molecule design for facilitating the development of electrolyte chemistry. Green Energy and Environment, 2022, 7, 1-2.	8.7	2
250	Synthesis of free-standing ternary Rh–Pt–SnO ₂ -carbon nanotube nanostructures as a highly active and robust catalyst for ethanol oxidation. RSC Advances, 2020, 10, 45149-45158.	3.6	2
251	Micrometer-sized Si-Sn-O novel structures with SiONWs on their surfaces. Applied Physics A: Materials Science and Processing, 2003, 76, 999-1002.	2.3	1
252	Dynamic fracture behaviour of Fe ₇₈ Si ₉ B ₁₃ metallic glass ribbon under laser shock loading. Fatigue and Fracture of Engineering Materials and Structures, 2014, 37, 508-516.	3.4	1

#	Article	IF	CITATIONS
253	Inadequate activation of the HBsAg-specific Th cells by APCs leads to hyporesponsiveness to HBsAg vaccine in B10.S mice. Human Vaccines and Immunotherapeutics, 2015, 11, 1735-1743.	3.3	1
254	One Step Synthesis of Me (Fe, Co, Ni) and Nitrogen co-doped Porous Graphene for ORR in Alkaline Electrolyte. ECS Transactions, 2016, 72, 169-175.	0.5	1
255	Advantages and Challenges of One-Dimensional Nanostructures for Fuel Cell Applications. , 2017, , 5-7.		1
256	Ultra Broadband THz and IR (0.1 \hat{a} €"200THz) Pulse Generation from Laser Plasma Interaction. , 2014, , .		0
257	Intense THz-coherent transition radiation from laser solid plasma interaction. , 2017, , .		0
258	Preparation of One-Dimensional Catalysts for Fuel Cell Applications. , 2017, , 9-18.		0
259	Electrocatalytic Performance of Reduced Graphene Oxide Based Materials for Oxygen Reduction Reaction (ORR). , 2017, , .		0
260	Co3O4/Reduced Graphene Oxide Composite as Electrocatalyst for Oxygen Reduction Reaction. , 2017, , .		0
261	Cobalt Hydroxide/Heteroatom Doped Graphene Composite as Electrocalyst for Oxygen Reduction Reaction. , 2018, , .		0
262	6. Rational Design of Highly Efficient Non-precious Metal Catalysts for Oxygen Reduction in Fuel Cells and Metal–Air Batteries. , 2019, , 161-182.		0
263	Optimization of High-Field THz Pulse Generation by the Interaction of High Intensity Lasers with Aligned Nanorod Targets. , 2018, , .		0