Paul H Steen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2637660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dynamics of inviscid capillary breakup: collapse and pinchoff of a film bridge. Journal of Fluid Mechanics, 1997, 341, 245-267.	1.4	183
2	Capillarity-based switchable adhesion. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3377-3381.	3.3	141
3	Capillary oscillations of a constrained liquid drop. Physics of Fluids, 2009, 21, .	1.6	88
4	Condensation on Surface Energy Gradient Shifts Drop Size Distribution toward Small Drops. Langmuir, 2014, 30, 1788-1798.	1.6	70
5	Dynamics of sessile drops. Part 1. Inviscid theory. Journal of Fluid Mechanics, 2014, 760, 5-38.	1.4	69
6	Substrate constraint modifies the Rayleigh spectrum of vibrating sessile drops. Physical Review E, 2013, 88, 023015.	0.8	56
7	Plume formation and resonant bifurcations in porous-media convection. Journal of Fluid Mechanics, 1994, 272, 67-90.	1.4	55
8	Mass production of shaped particles through vortex ring freezing. Nature Communications, 2016, 7, 12401.	5.8	55
9	Dynamics of sessile drops. Part 2. Experiment. Journal of Fluid Mechanics, 2015, 768, 442-467.	1.4	51
10	The electroosmotic droplet switch: Countering capillarity with electrokinetics. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 11974-11979.	3.3	42
11	Capillary dynamics of coupled spherical-cap droplets. Journal of Fluid Mechanics, 2007, 580, 495-505.	1.4	41
12	Low-dissipation capillary switches at small scales. Applied Physics Letters, 2005, 86, 014106.	1.5	32
13	Stability of constrained cylindrical interfaces and the torus lift of Plateau–Rayleigh. Journal of Fluid Mechanics, 2010, 647, 201-219.	1.4	28
14	Capillary puddle vibrations linked to casting-defect formation in planar-flow melt spinning. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2006, 37, 445-456.	1.0	27
15	Droplet motions fill a periodic table. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4849-4854.	3.3	27
16	Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. Journal of Fluid Mechanics, 2013, 714, 312-335.	1.4	24
17	Moving contact-line mobility measured. Journal of Fluid Mechanics, 2018, 841, 767-783.	1.4	23
18	Static rivulet instabilities: varicose and sinuousÂmodes. Journal of Fluid Mechanics, 2018, 837, 819-838.	1.4	23

PAUL H STEEN

#	Article	IF	CITATIONS
19	Coupled oscillations of deformable spherical-cap droplets. Part 2. Viscous motions. Journal of Fluid Mechanics, 2013, 714, 336-360.	1.4	21
20	Switchable Wettability for Condensation Heat Transfer. ACS Applied Materials & Interfaces, 2020, 12, 22115-22119.	4.0	18
21	Response of driven sessile drops with contact-line dissipation. Soft Matter, 2016, 12, 8919-8926.	1.2	16
22	A drip-crosslinked tough hydrogel. Polymer, 2018, 135, 327-330.	1.8	16
23	OpenFOAM Simulations of Late Stage Container Draining in Microgravity. Fluids, 2020, 5, 207.	0.8	15
24	Beetle-inspired adhesion by capillary-bridge arrays: pull-off detachment. Journal of Adhesion Science and Technology, 2014, 28, 273-289.	1.4	14
25	Nonaxisymmetric Effects in Drop-On-Demand Piezoacoustic Inkjet Printing. Physical Review Applied, 2020, 13, .	1.5	13
26	Energy dissipation and the contact-line region of a spreading bridge. Journal of Fluid Mechanics, 2012, 703, 111-141.	1.4	12
27	Chaotic motions of a forced droplet-droplet oscillator. Physics of Fluids, 2008, 20, .	1.6	10
28	Dynamics and stability of volume-scavenging drop arrays: Coarsening by capillarity. Physica D: Nonlinear Phenomena, 2009, 238, 531-539.	1.3	10
29	Is contact-line mobility a material parameter?. Npj Microgravity, 2022, 8, 6.	1.9	10
30	Liquid-bridge shape stability by energy bounding. IMA Journal of Applied Mathematics, 2015, 80, 1759-1775.	0.8	8
31	Dissipation of oscillatory contact lines using resonant mode scanning. Npj Microgravity, 2020, 6, 3.	1.9	8
32	The draining of capillary liquids from containers with interior corners aboard the ISS. Npj Microgravity, 2021, 7, 45.	1.9	8
33	Contacting and forming singularities: Distinguishing examples. Chaos, 1999, 9, 164-172.	1.0	7
34	A dynamic model of the electroosmotic droplet switch. Physics of Fluids, 2013, 25, .	1.6	7
35	Adaptive adhesion by a beetle: Manipulation of liquid bridges and their breaking limits. Biointerphases, 2014, 9, 011001.	0.6	7
36	Drop impact on solids: contact-angle hysteresis filters impact energy into modal vibrations. Journal of Fluid Mechanics, 2021, 923, .	1.4	7

PAUL H STEEN

#	Article	IF	CITATIONS
37	Suppression of the capillary instability in the Rayleigh–Taylor slot problem. Physics of Fluids, 1996, 8, 97-102.	1.6	6
38	Liquid-bridge mediated droplet switch: A tristable capillary system. Physics of Fluids, 2005, 17, 127107.	1.6	6
39	Sweeping by sessile drop coalescence. European Physical Journal: Special Topics, 2020, 229, 1739-1756.	1.2	6
40	Saph and Schoder and the Friction Law of Blasius. Annual Review of Fluid Mechanics, 2017, 49, 575-582.	10.8	5
41	Vorticity transport in solidification boundary layers. Journal of Fluid Mechanics, 2001, 426, 397-406.	1.4	4
42	Footprint geometry and sessile drop resonance. Physical Review E, 2017, 95, 033109.	0.8	4
43	Volume scavenging of networked droplets. Physica D: Nonlinear Phenomena, 2019, 394, 1-15.	1.3	4
44	Resonant mode scanning to compute the spectrum of capillary surfaces with dynamic wetting effects. Journal of Engineering Mathematics, 2021, 129, 1.	0.6	4
45	Substrate Heating in the Planar-Flow Melt Spinning of Metals. Journal of Thermal Science and Engineering Applications, 2014, 6, .	0.8	3
46	Steiner triangular drop dynamics. Chaos, 2020, 30, 023118.	1.0	3
47	Capillary Flow Experiments Conducted Aboard the International Space Station: Experiments and Simulations. Microgravity Science and Technology, 2022, 34, .	0.7	3
48	Bifurcation and Stability of <i>n</i> Coupled Droplet Oscillators with \$S_n\$ Symmetry. SIAM Journal on Applied Mathematics, 2011, 71, 1204-1219.	0.8	2
49	Simulating Heat Transfer During Transient Dropwise Condensation on a Low-Thermal-Conductivity Substrate. Langmuir, 2019, 35, 11566-11578.	1.6	2
50	Electro-Osmotic Gripper Characterization for Layered Assembly. 3D Printing and Additive Manufacturing, 0, , .	1.4	0