
Gabriel Grilli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2637494/publications.pdf Version: 2024-02-01

CARDIEL CDILLI

#	Article	IF	CITATIONS
1	The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global metaâ€analysis. New Phytologist, 2022, 235, 320-332.	7.3	53
2	Forest fragments influence pollination and yield of soybean crops in Chaco landscapes. Basic and Applied Ecology, 2020, 48, 61-72.	2.7	18
3	Soybean yield, protein content and oil quality in response to interaction of arbuscular mycorrhizal fungi and native microbial populations from mono- and rotation-cropped soils. Applied Soil Ecology, 2020, 152, 103575.	4.3	26
4	Structure and Diversity of Arbuscular Mycorrhizal Fungal Communities Across Spatial and Environmental Gradients in the Chaco Forest of South America. Fungal Biology, 2019, , 203-215.	0.6	1
5	Root-associated fungi increase male fitness, while high simulated herbivory decreases indirect defenses in Croton lachnostachyus plants. Plant Ecology, 2019, 220, 29-39.	1.6	6
6	Root colonizing and soil borne communities of arbuscular mycorrhizal fungi differ among soybean fields with contrasting historical land use. Agriculture, Ecosystems and Environment, 2019, 269, 174-182.	5.3	34
7	Flower trade-offs derived from nectar investment in female reproduction of two Nicotiana species (Solanaceae). Acta Botanica Brasilica, 2018, 32, 473-478.	0.8	9
8	Fungal diversity at fragmented landscapes: synthesis and future perspectives. Current Opinion in Microbiology, 2017, 37, 161-165.	5.1	28
9	Taxonomic and Functional Response of Arbuscular Mycorrhizal Fungi to Land Use Change in Central Argentina. Fungal Biology, 2016, , 81-90.	0.6	7
10	Arbuscular mycorrhizal fungal diversity in rhizosphere spores versus roots of an endangered endemic tree from Argentina: Is fungal diversity similar among forest disturbance types?. Applied Soil Ecology, 2016, 98, 272-277.	4.3	15
11	The composition of arbuscular mycorrhizal fungal communities in the roots of a ruderal forb is not related to the forest fragmentation process. Environmental Microbiology, 2015, 17, 2709-2720.	3.8	42
12	Arbuscular mycorrhizal fungal composition in high montane forests with different disturbance histories in central Argentina. Applied Soil Ecology, 2015, 85, 30-37.	4.3	25
13	Linking mycorrhizal fungi and soil nutrients to vegetative and reproductive ruderal plant development in a fragmented forest at central Argentina. Forest Ecology and Management, 2013, 310, 442-449.	3.2	17
14	FrugivorÃa y remoción de frutos ornitócoros en fragmentos del bosque chaqueño de Córdoba (Argentina). Bosque, 2012, 33, 07-08.	0.3	16
15	Forest fragment size and nutrient availability: complex responses of mycorrhizal fungi in native–exotic hosts. Plant Ecology, 2012, 213, 155-165.	1.6	34