mohamad Zakeri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263701/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ablation resistance of graphite coated by spark plasma sintered ZrB2–SiC based composites. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2022, 61, 604-610.	1.9	2
2	Fabrication of (Zr,Ti)B2–ZrN–BN composites through reactive spark plasma sintering of ZrB2 and TiN. Micron, 2022, 154, 103203.	2.2	5
3	On the reactive spark plasma sinterability of ZrB2–SiC–TiN composite. Journal of Alloys and Compounds, 2022, 909, 164611.	5.5	4
4	Synergistic influence of SiC and C ₃ N ₄ reinforcements on the characteristics of ZrB ₂ -based composites. Journal of Asian Ceramic Societies, 2021, 9, 53-62.	2.3	6
5	Hot corrosion behavior of plasma sprayed La2Ce2O7/YSZ thermal barrier composite coating in the presence of Sulfate and Vanadate molten Salts. Corrosion Science, 2021, 183, 109349.	6.6	7
6	Effect of short carbon fiber content on the mechanical properties of TiB ₂ â€based composites prepared by spark plasma sintering. International Journal of Applied Ceramic Technology, 2021, 18, 1691-1701.	2.1	3
7	Spark plasma sintering of quadruplet ZrB2–SiC–ZrC–Cf composites. Ceramics International, 2020, 46, 156-164.	4.8	36
8	Improving the thermal shock resistance and fracture toughness of synthesized La2Ce2O7 thermal barrier coatings through formation of La2Ce2O7/YSZ composite coating via air plasma spraying. Surface and Coatings Technology, 2020, 399, 126174.	4.8	26
9	Investigation on microstructure and mechanical properties of HfB2-SiC-HfC ternary system with different HfC content prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105350.	3.8	9
10	Co-reinforcing of ZrB2–SiC ceramics with optimized ZrC to Cf ratio. Ceramics International, 2020, 46, 22661-22673.	4.8	37
11	A novel ZrB2–C3N4 composite with improved mechanical properties. Ceramics International, 2019, 45, 21512-21519.	4.8	66
12	Effects of SPS parameters on the densification and mechanical properties of TiB2-SiC composite. Ceramics International, 2019, 45, 10550-10557.	4.8	45
13	A comparative study on the synthesis of oxide-free ZrB2-xZrC composites. Ceramics International, 2019, 45, 3760-3766.	4.8	1
14	Prediction of the mean grain size of MA-synthesized nanopowders by artificial neural networks. Neural Computing and Applications, 2019, 31, 723-732.	5.6	1
15	Microstructure and ablative properties of Si-SiC coating prepared by spark plasma sintering. Ceramics International, 2018, 44, 8403-8408.	4.8	23
16	In situ synthesis–sintering of YAG/MAS composites by reactive spark plasma sintering. Journal of the Australian Ceramic Society, 2018, 54, 395-399.	1.9	0
17	Effect of the alfa content on the mechanical properties of Si3N4/BAS composite by spark plasma sintering. Journal of Alloys and Compounds, 2018, 756, 76-81.	5.5	7
18	Effect of annealing process on IR transmission and mechanical properties of spark plasma sintered Yttria. Ceramics International, 2018, 44, 1668-1674.	4.8	5

MOHAMAD ZAKERI

#	Article	IF	CITATIONS
19	Spark plasma sintering of silicon nitride/barium aluminum silicate composite. Ceramics International, 2017, 43, 9153-9157.	4.8	18
20	Effect of composition on spark plasma sintering of ZrB2–SiC–ZrC nanocomposite synthesized by MASPSyn. Ceramics International, 2017, 43, 111-115.	4.8	16
21	Synthesis of ZrB 2 –SiC–ZrC nanocomposite by spark plasma in ZrSiO 4 /B 2 O 3 /C/Mg system. Ceramics International, 2016, 42, 6581-6586.	4.8	19
22	Effect of HfB2 on microstructure and mechanical properties of ZrB2–SiC-based composites. International Journal of Refractory Metals and Hard Materials, 2016, 54, 127-137.	3.8	58
23	Taguchi design and hardness optimization of ZrB2-based composites reinforced with chopped carbon fiber and different additives and prepared by SPS. Journal of Alloys and Compounds, 2015, 639, 617-625.	5.5	51
24	An investigation on the in situ synthesis–sintering and mechanical properties of MoSi2–xSiC composites prepared by spark plasma sintering. International Journal of Refractory Metals and Hard Materials, 2015, 48, 263-271.	3.8	19
25	Effect of SiC-mullite coatings on oxidation resistance of graphite. Advances in Applied Ceramics, 2014, 113, 358-361.	1.1	13
26	Synthesis of Ag-ZnO composites via ball milling and hot pressing processes. Materials Science-Poland, 2014, 32, 121-125.	1.0	3
27	Effect of Ceramic Particulate on the Mechanical Properties of PVP–HA–Alumina Nanocomposite. Arabian Journal for Science and Engineering, 2014, 39, 2227-2233.	1.1	4
28	Mechanochemical synthesis of Al2O3–ZrB2–ZrO2 nanocomposite powder. Materials Research Bulletin, 2014, 49, 672-676.	5.2	20
29	The effect of mechanical alloying on microstructure and mechanical properties of MoSi2 prepared by spark plasma sintering. Journal of Alloys and Compounds, 2014, 593, 242-249.	5.5	23
30	High-frequency induction heated sintering of ball milled Fe-WC nanocomposites. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 693-699.	4.9	11
31	Mechanical properties of TiO2-hydroxyapatite nanostructured coatings on Ti-6Al-4V substrates by APS method. International Journal of Minerals, Metallurgy and Materials, 2013, 20, 397-402.	4.9	22
32	Modeling the mean grain size of synthesized nanopowders produced by mechanical alloying. Ceramics International, 2013, 39, 1587-1596.	4.8	8
33	Synthesis of nanostructure tetragonal ZrO ₂ by high energy ball milling. Materials Technology, 2013, 28, 181-186.	3.0	6
34	Mechanochemical synthesis of nanocrystalline hydroxyapatite via mechanical alloying. Materials Technology, 2013, 28, 159-164.	3.0	4
35	Effect of starting composition on formation of MoSi2–SiC nanocomposite powder via ball milling. Bulletin of Materials Science, 2012, 35, 533-538.	1.7	9
36	Effect of ball to powder weight ratio on the mechanochemical synthesis of MoSi2-TiC nanocomposite powder. Materials Research, 2012, 15, 891-897.	1.3	19

MOHAMAD ZAKERI

#	Article	IF	CITATIONS
37	Synthesis of MoSi2–TiC nanocomposite powder via mechanical alloying and subsequent annealing. Ceramics International, 2012, 38, 1353-1357.	4.8	23
38	Mechanochemical synthesis of MoSi2–SiC nanocomposite powder. Ceramics International, 2012, 38, 2977-2982.	4.8	6
39	Effect of milling speed and shaping method on mechanical properties of nanostructure bulked aluminum. Materials & Design, 2012, 37, 487-490.	5.1	8
40	Synthesis of FeAl–TiC nanocomposite powder via mechanical alloying and subsequent annealing. Powder Metallurgy, 2011, 54, 278-285.	1.7	3
41	Study on feasibility of Ti ₃ AlC ₂ synthesis by mechanical alloying and heat treatment. Powder Metallurgy, 2011, 54, 273-277.	1.7	6
42	<i>In situ</i> formation of FeAl–Al ₂ O ₃ nanocomposite at different conditions of milling and subsequent annealing. Powder Metallurgy, 2011, 54, 292-298.	1.7	2
43	Effect of milling and annealing parameters on formation of (Mo _{0·85} –Cr _{0·15})Si ₂ nanocomposite powder. Powder Metallurgy, 2011, 54, 440-444.	1.7	2
44	Preparation of FeAl–Al ₂ O ₃ nanocomposite via mechanical alloying and subsequent annealing. Materials Science and Technology, 2010, 26, 1132-1136.	1.6	8
45	Synthesis of (Mo1â^'–Cr)Si2 nanostructured powders via mechanical alloying and following heat treatment. Journal of Alloys and Compounds, 2010, 489, 379-383.	5.5	17
46	Preparation of alumina–tungsten carbide nanocomposite by mechano-chemical reduction of WO3 with aluminum and graphite. Journal of Alloys and Compounds, 2010, 491, 203-208.	5.5	20
47	Synthesis of nanocrystalline Bi2Te3 via mechanical alloying. Journal of Materials Processing Technology, 2009, 209, 96-101.	6.3	49
48	Low temperature synthesis of nanocrystalline Sb2Te3 by mechanical alloying. Journal of Materials Science, 2008, 43, 1638-1643.	3.7	17
49	Preparation of NiAl–TiC nanocomposite by mechanical alloying. Journal of Materials Science, 2008, 43, 6912-6919.	3.7	16
50	Mechanically activated synthesis of nanocrystalline ternary carbide Fe3Mo3C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 492, 311-316.	5.6	14
51	Mechanochemical reduction of MoO3/SiO2 powder mixtures by Al and carbon for the synthesis of nanocrystalline MoSi2. Journal of Alloys and Compounds, 2007, 430, 170-174.	5.5	35
52	Synthesis of nanocrystalline hydroxyapatite by using precipitation method. Journal of Alloys and Compounds, 2007, 430, 330-333.	5.5	379
53	Synthesis of MoSi2–Al2O3 nanocomposite by mechanical alloying. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 185-188.	5.6	46
54	Synthesis of nanocrystalline MoSi2 by mechanical alloying. Journal of Alloys and Compounds, 2005, 403, 258-261.	5.5	61