Ondrej Uhlik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2636802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	PHYTOREMEDIATION. Annual Review of Plant Biology, 2005, 56, 15-39.	8.6	1,728
2	Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment?. Frontiers in Plant Science, 2018, 9, 1476.	1.7	294
3	Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs). ISME Journal, 2007, 1, 134-148.	4.4	198
4	Identification of Bacteria Utilizing Biphenyl, Benzoate, and Naphthalene in Long-Term Contaminated Soil. PLoS ONE, 2012, 7, e40653.	1.1	124
5	Stable isotope probing in the metagenomics era: A bridge towards improved bioremediation. Biotechnology Advances, 2013, 31, 154-165.	6.0	114
6	Biphenyl-Metabolizing Bacteria in the Rhizosphere of Horseradish and Bulk Soil Contaminated by Polychlorinated Biphenyls as Revealed by Stable Isotope Probing. Applied and Environmental Microbiology, 2009, 75, 6471-6477.	1.4	102
7	Effects of Secondary Plant Metabolites on Microbial Populations: Changes in Community Structure and Metabolic Activity in Contaminated Environments. International Journal of Molecular Sciences, 2016, 17, 1205.	1.8	102
8	The invisible life inside plants: Deciphering the riddles of endophytic bacterial diversity. Biotechnology Advances, 2020, 44, 107614.	6.0	79
9	DNA-based stable isotope probing: a link between community structure and function. Science of the Total Environment, 2009, 407, 3611-3619.	3.9	77
10	Matrix-Assisted Laser Desorption Ionization (MALDI)-Time of Flight Mass Spectrometry- and MALDI Biotyper-Based Identification of Cultured Biphenyl-Metabolizing Bacteria from Contaminated Horseradish Rhizosphere Soil. Applied and Environmental Microbiology, 2011, 77, 6858-6866.	1.4	77
11	Phyto/rhizoremediation studies using long-term PCB-contaminated soil. Environmental Science and Pollution Research, 2009, 16, 817-829.	2.7	76
12	Whole-Cell MALDI-TOF MS Versus 16S rRNA Gene Analysis for Identification and Dereplication of Recurrent Bacterial Isolates. Frontiers in Microbiology, 2018, 9, 1294.	1.5	76
13	Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil. Applied Microbiology and Biotechnology, 2013, 97, 9245-9256.	1.7	56
14	Synergistic Processing of Biphenyl and Benzoate: Carbon Flow Through the Bacterial Community in Polychlorinated-Biphenyl-Contaminated Soil. Scientific Reports, 2016, 6, 22145.	1.6	55
15	Pseudomonads Rule Degradation of Polyaromatic Hydrocarbons in Aerated Sediment. Frontiers in Microbiology, 2015, 6, 1268.	1.5	54
16	Whole-cell MALDI-TOF: Rapid screening method in environmental microbiology. International Biodegradation, 2012, 69, 82-86.	1.9	46
17	Plants Rather than Mineral Fertilization Shape Microbial Community Structure and Functional Potential in Legacy Contaminated Soil. Frontiers in Microbiology, 2016, 7, 995.	1.5	43
18	Plant–microorganism interactions in bioremediation of polychlorinated biphenyl-contaminated soil. New Biotechnology, 2012, 30, 15-22.	2.4	42

Ondrej Uhlik

#	Article	IF	CITATIONS
19	Secondary compound hypothesis revisited: Selected plant secondary metabolites promote bacterial degradation of cis-1,2-dichloroethylene (cDCE). Scientific Reports, 2017, 7, 8406.	1.6	38
20	Complete genome sequence of Pseudomonas alcaliphila JAB1 (=DSM 26533), a versatile degrader of organic pollutants. Standards in Genomic Sciences, 2018, 13, 3.	1.5	36
21	Linking toxicity profiles to pollutants in sludge and sediments. Journal of Hazardous Materials, 2017, 321, 672-680.	6.5	34
22	Novel PCB-degrading Rhodococcus strains able to promote plant growth for assisted rhizoremediation of historically polluted soils. PLoS ONE, 2019, 14, e0221253.	1.1	31
23	Bacterial succession in oil-contaminated soil under phytoremediation with poplars. Chemosphere, 2020, 243, 125242.	4.2	30
24	Diversity of chlorobiphenyl-metabolizing bacteria and their biphenyl dioxygenases in contaminated sediment. Chemosphere, 2013, 93, 1548-1555.	4.2	28
25	Differential Impacts of Willow and Mineral Fertilizer on Bacterial Communities and Biodegradation in Diesel Fuel Oil-Contaminated Soil. Frontiers in Microbiology, 2016, 7, 837.	1.5	26
26	Bacterial Biotransformation of Pentachlorophenol and Micropollutants Formed during Its Production Process. International Journal of Environmental Research and Public Health, 2016, 13, 1146.	1.2	25
27	Bioremediation of chlorophenol-contaminated sawmill soil using pilot-scale bioreactors under consecutive anaerobic-aerobic conditions. Chemosphere, 2019, 227, 670-680.	4.2	25
28	Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing. Frontiers of Environmental Science and Engineering, 2015, 9, 453-464.	3.3	22
29	Diversity and phylogenetic composition of bacterial communities and their association with anthropogenic pollutants in sewage sludge. Chemosphere, 2020, 238, 124629.	4.2	21
30	Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microbial Genomics, 2020, 6, .	1.0	20
31	Approaches for diversity analysis of cultivable and non-cultivable bacteriain real soil. Plant, Soil and Environment, 2009, 55, 389-396.	1.0	18
32	Bacterial community structure in treated sewage sludge with mesophilic and thermophilic anaerobic digestion. Folia Microbiologica, 2015, 60, 531-539.	1.1	18
33	Microbial Communities in Soils and Endosphere of Solanum tuberosum L. and their Response to Long-Term Fertilization. Microorganisms, 2020, 8, 1377.	1.6	17
34	Diversity of root-associated microbial populations of Tamarix parviflora cultivated under various conditions. Applied Soil Ecology, 2018, 125, 264-272.	2.1	16
35	Bacterial Degradation of Polychlorinated Biphenyls. , 2010, , 347-366.		16
36	Pseudogemmobacter bohemicus gen. nov., sp. nov., a novel taxon from the Rhodobacteraceae family isolated from heavy-metal-contaminated sludge. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 2401-2407.	0.8	14

Ondrej Uhlik

#	Article	IF	CITATIONS
37	Bacterial acquisition of hexachlorobenzene-derived carbon in contaminated soil. Chemosphere, 2014, 113, 141-145.	4.2	13
38	Advances in Phytoremediation and Rhizoremediation. Soil Biology, 2009, , 257-277.	0.6	12
39	Exploring the Potential of Micrococcus luteus Culture Supernatant With Resuscitation-Promoting Factor for Enhancing the Culturability of Soil Bacteria. Frontiers in Microbiology, 2021, 12, 685263.	1.5	12
40	Affinity chromatography reveals RuBisCO as an ecdysteroid-binding protein. Steroids, 2008, 73, 1433-1440.	0.8	10
41	Biphenyl 2,3-Dioxygenase in Pseudomonas alcaliphila JAB1 Is Both Induced by Phenolics and Monoterpenes and Involved in Their Transformation. Frontiers in Microbiology, 2021, 12, 657311.	1.5	8
42	Response of Soil Microbes and Soil Enzymatic Activity to 20 Years of Fertilization. Agronomy, 2020, 10, 1542.	1.3	7
43	Soil microbial communities following 20Âyears of fertilization and crop rotation practices in the Czech Republic. Environmental Microbiomes, 2022, 17, 13.	2.2	7
44	Affinity chromatography as the method for brassinosteroid-binding protein isolation. Journal of Biotechnology, 2010, 150, 490-490.	1.9	6
45	<i>Kocuria</i> Bacterial Isolates from Radioactive Springs of Jáchymov spa (Joachimsthal) as Sources of Polyunsaturated Fatty Acids. Lipids, 2019, 54, 177-187.	0.7	5
46	Effect of chelated iron activated peroxydisulfate oxidation on perchloroethene-degrading microbial consortium. Chemosphere, 2021, 266, 128928.	4.2	5
47	Genomic analysis of dibenzofuran-degrading <i>Pseudomonas veronii</i> strain Pvy reveals its biodegradative versatility. G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	5
48	Predominant Biphenyl Dioxygenase From Legacy Polychlorinated Biphenyl (PCB)-Contaminated Soil Is a Part of Unusual Gene Cluster and Transforms Flavone and Flavanone. Frontiers in Microbiology, 2021, 12, 644708.	1.5	4
49	Hunting Down Frame Shifts: Ecological Analysis of Diverse Functional Gene Sequences. Frontiers in Microbiology, 2015, 6, 1267.	1.5	3
50	Genomic analysis of Acinetobacter pittii CEP14 reveals its extensive biodegradation capabilities, including cometabolic degradation of cis-1,2-dichloroethene. Antonie Van Leeuwenhoek, 2022, 115, 1041-1057.	0.7	3
51	A novel approach to analysis microbial population in PCB-contaminated sediment. Journal of Biotechnology, 2008, 136, S703.	1.9	0