Nial j Wheate

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2636298/publications.pdf Version: 2024-02-01

Νίλι ι Μμελτε

#	Article	IF	CITATIONS
1	A review of environmental contamination and potential health impacts on aquatic life from the active chemicals in sunscreen formulations. Australian Journal of Chemistry, 2022, 75, 241-248.	0.5	3
2	Poisonings with ADHD medication in children under the age of 5 years in Australia: a retrospective study, 2004–2019. BMJ Paediatrics Open, 2022, 6, e001325.	0.6	1
3	Medicinal Cannabis for the Treatment of Anxiety Disorders: a Narrative Review. Current Treatment Options in Psychiatry, 2022, 9, 163-173.	0.7	6
4	A chemical perspective on the clinical use of platinum-based anticancer drugs. Dalton Transactions, 2022, 51, 10835-10846.	1.6	39
5	Opioid exposures in children under 5 years of age (2004–2019): A retrospective study of calls to Australia's largest poisons information centre. Journal of Paediatrics and Child Health, 2021, 57, 883-887.	0.4	1
6	An Analysis for Adulteration and Contamination of Over-the-Counter Weight-Loss Products. AAPS PharmSciTech, 2021, 22, 78.	1.5	3
7	Macrocycles as drug-enhancing excipients in pharmaceutical formulations. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 100, 55-69.	0.9	34
8	Comparative host–guest complex formation of the Alzheimer's drug memantine with para-sulfonatocalix[n]arenes (n = 4 or 8). Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2021, 101, 131-137.	0.9	1
9	Demonstration of the first known 1:2 host-guest encapsulation of a platinum anticancer complex within a macrocycle. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 96, 145-154.	0.9	6
10	Platinum drugs in the Australian cancer chemotherapy healthcare setting: Is it worthwhile for chemists to continue to develop platinums?. Inorganica Chimica Acta, 2019, 492, 177-181.	1.2	21
11	Analysis of the interaction of para-sulfonatocalix[8]arene with free amino acids and a six residue segment of β-amyloid peptide as a potential treatment for Alzheimer's disease. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2019, 93, 265-273.	0.9	4
12	The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Transactions, 2018, 47, 6645-6653.	1.6	1,088
13	Demonstration of InÂVitro Host-Guest Complex Formation and Safety of para-Sulfonatocalix[8]arene as a Delivery Vehicle for Two Antibiotic Drugs. Journal of Pharmaceutical Sciences, 2018, 107, 3105-3111.	1.6	16
14	Patterns of platinum drug use in an acute care setting: a retrospective study. Journal of Cancer Research and Clinical Oncology, 2018, 144, 1561-1568.	1.2	22
15	Comparative macrocycle binding of the anticancer drug phenanthriplatin by cucurbit[n]urils, β-cyclodextrin and para-sulfonatocalix[4]arene: a 1H NMR and molecular modelling study. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 251-258.	0.9	18
16	Determining the Ibuprofen Concentration in Liquid-Filled Gelatin Capsules To Practice Collecting and Interpreting Experimental Data, and Evaluating the Methods and Accuracy of Quality Testing. Journal of Chemical Education, 2017, 94, 1107-1110.	1.1	3
17	Evaluation of the antidepressant therapeutic potential of isocyanine and pseudoisocyanine analogues of the organic cation decynium-22. European Journal of Medicinal Chemistry, 2017, 137, 476-487.	2.6	11
18	para -Sulfonatocalix[4]arene and polyamidoamine dendrimer nanocomplexes as delivery vehicles for a novel platinum anticancer agent. Journal of Inorganic Biochemistry, 2017, 176, 1-7.	1.5	8

#	Article	IF	CITATIONS
19	Cucurbit[<i>n</i>]urils as excipients in pharmaceutical dosage forms. Supramolecular Chemistry, 2016, 28, 849-856.	1.5	48
20	Loading of a Phenanthroline-Based Platinum(II) Complex onto the Surface of a Carbon Nanotube via ï€â€"ï€ Stacking. Australian Journal of Chemistry, 2016, 69, 1124.	0.5	10
21	Host-Guest Complexes of Carboxylated Pillar[n]arenes With Drugs. Journal of Pharmaceutical Sciences, 2016, 105, 3615-3625.	1.6	40
22	Executive functions predict conceptual learning of science. British Journal of Developmental Psychology, 2016, 34, 261-275.	0.9	71
23	Cucurbit [7] uril encapsulated cisplatin overcomes resistance to cisplatin induced by Rab25 overexpression in an intraperitoneal ovarian cancer model. Journal of Ovarian Research, 2015, 8, 62.	1.3	18
24	The state-of-play and future of platinum drugs. Endocrine-Related Cancer, 2015, 22, R219-R233.	1.6	216
25	Evidence for a Role of Executive Functions in Learning Biology. Infant and Child Development, 2014, 23, 67-83.	0.9	19
26	The ex vivo neurotoxic, myotoxic and cardiotoxic activity of cucurbituril-based macrocyclic drug delivery vehicles. Toxicology Research, 2014, 3, 447-455.	0.9	100
27	Analysis of montmorillonite clay as a vehicle in platinum anticancer drug delivery. Inorganica Chimica Acta, 2014, 421, 513-518.	1.2	16
28	Chemical factors affecting cucurbit[<i>n</i>]uril formulation into ocular dosage forms: excipient binding, solubility, corneal permeability and antibiotic encapsulation. Supramolecular Chemistry, 2014, 26, 648-656.	1.5	10
29	A cisplatin slow-release hydrogel drug delivery system based on a formulation of the macrocycle cucurbit[7]uril, gelatin and polyvinyl alcohol. Journal of Inorganic Biochemistry, 2014, 134, 100-105.	1.5	57
30	Amide Coupling Reaction for the Synthesis of Bispyridine-based Ligands and Their Complexation to Platinum as Dinuclear Anticancer Agents. Journal of Visualized Experiments, 2014, , .	0.2	1
31	Topical Cream-Based Dosage Forms of the Macrocyclic Drug Delivery Vehicle Cucurbit[6]uril. PLoS ONE, 2014, 9, e85361.	1.1	10
32	DNA-based aptamer fails as a simultaneous cancer targeting agent and drug delivery vehicle for a phenanthroline-based platinum(II) complex. Journal of Inorganic Biochemistry, 2013, 128, 124-130.	1.5	12
33	Platinum Anticancer Drugs. , 2013, , 1710-1714.		9
34	Magnetised Thermo Responsive Lipid Vehicles for Targeted and Controlled Lung Drug Delivery. Pharmaceutical Research, 2012, 29, 2456-2467.	1.7	47
35	Combining aspects of the platinum anticancer drugs picoplatin and BBR3464 to synthesize a new family of sterically hindered dinuclear complexes; their synthesis, binding kinetics and cytotoxicity. Dalton Transactions, 2012, 41, 11330.	1.6	25
36	Nanoparticles: the future for platinum drugs or a research red herring?. Nanomedicine, 2012, 7, 1285-1287.	1.7	11

#	Article	IF	CITATIONS
37	Folding of dinuclear platinum anticancer complexes within the cavity of para-sulphonatocalix[4]arene. Inorganica Chimica Acta, 2012, 393, 182-186.	1.2	23
38	Cisplatin-Tethered Gold Nanoparticles That Exhibit Enhanced Reproducibility, Drug Loading, and Stability: a Step Closer to Pharmaceutical Approval?. Inorganic Chemistry, 2012, 51, 3490-3497.	1.9	94
39	Cisplatin drug delivery using gold-coated iron oxide nanoparticles for enhanced tumour targeting with external magnetic fields. Inorganica Chimica Acta, 2012, 393, 328-333.	1.2	100
40	Rationalising sequence selection by ligand assemblies in the DNA minor groove: the case for thiazotropsin A. Chemical Science, 2012, 3, 711-722.	3.7	20
41	Cucurbit[7]uril encapsulated cisplatin overcomes cisplatin resistance via a pharmacokinetic effect. Metallomics, 2012, 4, 561.	1.0	90
42	The Potential of Cucurbit[<i>n</i>]urils in Drug Delivery. Israel Journal of Chemistry, 2011, 51, 616-624.	1.0	249
43	Evaluation of anionic half generation 3.5–6.5 poly(amidoamine) dendrimers as delivery vehicles for the active component of the anticancer drug cisplatin. Journal of Inorganic Biochemistry, 2011, 105, 1115-1122.	1.5	89
44	Solid state stabilisation of the orally delivered drugs atenolol, glibenclamide, memantine and paracetamol through their complexation with cucurbit[7]uril. Organic and Biomolecular Chemistry, 2010, 8, 765.	1.5	89
45	Host–guest complexes of the antituberculosis drugs pyrazinamide and isoniazid with cucurbit[7]uril. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 68, 359-367.	1.6	39
46	Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. Journal of the American Chemical Society, 2010, 132, 4678-4684.	6.6	739
47	Synthesis, Processing and Solid State Excipient Interactions of Cucurbit[6]uril and Its Formulation into Tablets for Oral Drug Delivery. Molecular Pharmaceutics, 2010, 7, 2166-2172.	2.3	36
48	Microwave synthesis of cucurbit[<i>n</i>]urils. Future Medicinal Chemistry, 2010, 2, 231-236.	1.1	19
49	The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Transactions, 2010, 39, 8113.	1.6	1,398
50	Anionic PAMAM dendrimers as drug delivery vehicles for transition metal-based anticancer drugs. Journal of Inorganic Biochemistry, 2009, 103, 373-380.	1.5	33
51	Side-on binding of p-sulphonatocalix[4]arene to the dinuclear platinum complex trans-[{PtCl(NH3)2}2μ-dpzm]2+ and its implications for anticancer drug delivery. Journal of Inorganic Biochemistry, 2009, 103, 448-454.	1.5	41
52	Diffusion Coefficient of Cucurbit[<i>n</i>]urils (<i>n</i> = 6 or 7) at Various Concentrations, Temperatures, and pH. Journal of Chemical & Engineering Data, 2009, 54, 323-326.	1.0	14
53	Studies of the Mechanism of Action of Platinum(II) Complexes with Potent Cytotoxicity in Human Cancer Cells. Journal of Medicinal Chemistry, 2009, 52, 5474-5484.	2.9	85
54	Diffusion-based studies on the self-stacking and nanorod formation of platinum(ii) intercalators. Chemical Communications, 2009, , 1210.	2.2	23

#	Article	IF	CITATIONS
55	A chemical preformulation study of a host–guest complex of cucurbit[7]uril and a multinuclear platinum agent for enhanced anticancer drug delivery. Dalton Transactions, 2009, , 7695.	1.6	61
56	Improving platinum(II)-based anticancer drug delivery using cucurbit[n]urils. Journal of Inorganic Biochemistry, 2008, 102, 2060-2066.	1.5	132
57	Degradation of Bidentate-Coordinated Platinum(II)-Based DNA Intercalators by Reduced <scp>l</scp> -Glutathione. Journal of Medicinal Chemistry, 2008, 51, 2787-2794.	2.9	77
58	Substituted β-Cyclodextrin and Calix[4]arene As Encapsulatory Vehicles for Platinum(II)-Based DNA Intercalators. Inorganic Chemistry, 2008, 47, 6880-6888.	1.9	77
59	Examination of Cucurbit[7]uril and Its Hostâ^'Guest Complexes by Diffusion Nuclear Magnetic Resonance. Journal of Physical Chemistry B, 2008, 112, 2311-2314.	1.2	43
60	The Host-Guest Chemistry of Proflavine with Cucurbit[6,7,8]urils. Supramolecular Chemistry, 2007, 19, 475-484.	1.5	38
61	DNA Intercalators in Cancer Therapy: Organic and Inorganic Drugs and Their Spectroscopic Tools of Analysis. Mini-Reviews in Medicinal Chemistry, 2007, 7, 627-648.	1.1	205
62	Novel platinum(ii)-based anticancer complexes and molecular hosts as their drug delivery vehicles. Dalton Transactions, 2007, , 5055.	1.6	110
63	Synthesis of DNA-Sequence-Selective Hairpin Polyamide Platinum Complexes. Chemistry - A European Journal, 2007, 13, 3177-3186.	1.7	15
64	Synthesis of a heterodinuclear ruthenium(II)–platinum(II) complex linked by l-cysteine methyl ester. Polyhedron, 2007, 26, 318-328.	1.0	5
65	Encapsulation of platinum(II)-based DNA intercalators within cucurbit[6,7,8]urils. Journal of Biological Inorganic Chemistry, 2007, 12, 969-979.	1.1	84
66	The effect of ancillary ligand chirality and phenanthroline functional group substitution on the cytotoxicity of platinum(II)-based metallointercalators. Journal of Inorganic Biochemistry, 2007, 101, 1049-1058.	1.5	85
67	Cucurbit[n]uril binding of platinum anticancer complexes. Dalton Transactions, 2006, , 451-458.	1.6	168
68	Polyamide Platinum Anticancer Complexes Designed to Target Specific DNA Sequences. Inorganic Chemistry, 2006, 45, 6004-6013.	1.9	32
69	(4,7-Dimethyl-1,10-phenanthroline)(ethylenediamine)platinum(II) dichloride tris(deuterium oxide) solvate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m3137-m3139.	0.2	11
70	Synthesis, Characterisation and Biological Activity of Chiral Platinum(II) Complexes. European Journal of Inorganic Chemistry, 2006, 2006, 839-849.	1.0	44
71	Cucurbit[n]uril: A New Molecule in Host - Guest Chemistry. Australian Journal of Chemistry, 2006, 59, 354.	0.5	25
72	Multi-Nuclear Platinum Drugs: A New Paradigm in Chemotherapy. Anti-Cancer Agents in Medicinal Chemistry, 2005, 5, 267-279.	7.0	84

#	Article	IF	CITATIONS
73	Potential adenine and minor groove binding platinum complexes. Journal of Inorganic Biochemistry, 2004, 98, 1578-1584.	1.5	33
74	Multi-nuclear platinum complexes encapsulated in cucurbit[n]uril as an approach to reduce toxicity in cancer treatment. Chemical Communications, 2004, , 1424.	2.2	144
75	Multi-nuclear platinum complexes as anti-cancer drugs. Coordination Chemistry Reviews, 2003, 241, 133-145.	9.5	244
76	DNA binding of the anti-cancer platinum complex trans-[{Pt(NH3)2Cl}2μ-dpzm]2+. Dalton Transactions, 2003, , 3486-3492.	1.6	25
77	Title is missing!. Australian Journal of Chemistry, 2001, 54, 141.	0.5	15
78	The binding of [(en)Pt(μ-dpzm)2Pt(en)]4+ to G/C-rich regions of DNA. Journal of Inorganic Biochemistry, 2001, 84, 119-127.	1.5	15
79	A 1H NMR study of the oligonucleotide binding of [(en)Pt(μ-dpzm)2Pt(en)]Cl4. Journal of Inorganic Biochemistry, 2000, 78, 313-320.	1.5	28
80	Aqueous compatibility of 15 pharmaceutical antimicrobial preservatives with the macrocycles cucurbit[7]uril and para-sulfonatocalix[4]arene. Supramolecular Chemistry, 0, , 1-9.	1.5	1