
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2636255/publications.pdf Version: 2024-02-01

ΔΟΡΙΑΝΙ SMITH

#	Article	IF	CITATIONS
1	The Biology of Avian Eimeria with an Emphasis on their Control by Vaccination. Advances in Parasitology, 2005, 60, 285-330.	3.2	309
2	Cloning and Characterization of Chicken IL-10 and Its Role in the Immune Response to <i>Eimeria maxima</i> . Journal of Immunology, 2004, 173, 2675-2682.	0.8	278
3	Expression patterns of chicken Toll-like receptor mRNA in tissues, immune cell subsets and cell lines. Veterinary Immunology and Immunopathology, 2005, 104, 117-127.	1.2	242
4	T-cell alpha beta + and gamma delta + deficient mice display abnormal but distinct phenotypes toward a natural, widespread infection of the intestinal epithelium Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11774-11779.	7.1	225
5	Allelic Variation in <i>TLR4</i> Is Linked to Susceptibility to <i>Salmonella enterica</i> Serovar Typhimurium Infection in Chickens. Infection and Immunity, 2003, 71, 1116-1124.	2.2	215
6	Expression and function of Toll-like receptors in chicken heterophils. Developmental and Comparative Immunology, 2005, 29, 791-807.	2.3	208
7	Rapid Expression of Chemokines and Proinflammatory Cytokines in Newly Hatched Chickens Infected with <i>Salmonella enterica </i> Serovar Typhimurium. Infection and Immunity, 2004, 72, 2152-2159.	2.2	207
8	ldentification and characterization of a functional, alternatively spliced Tollâ€like receptor 7 (TLR7) and genomic disruption of TLR8 in chickens. Immunology, 2005, 114, 507-521.	4.4	195
9	Visualizing the Neutrophil Response to Sterile Tissue Injury in Mouse Dermis Reveals a Three-Phase Cascade of Events. Journal of Investigative Dermatology, 2011, 131, 2058-2068.	0.7	187
10	Salmonella enterica Serovar Pullorum Persists in Splenic Macrophages and in the Reproductive Tract during Persistent, Disease-Free Carriage in Chickens. Infection and Immunity, 2001, 69, 7873-7879.	2.2	178
11	Enterochromaffin cell hyperplasia and decreased serotonin transporter in a mouse model of postinfectious bowel dysfunction. Neurogastroenterology and Motility, 2005, 17, 863-870.	3.0	172
12	Identification and Functional Characterization of Chicken Toll-Like Receptor 5 Reveals a Fundamental Role in the Biology of Infection with Salmonella enterica Serovar Typhimurium. Infection and Immunity, 2005, 73, 2344-2350.	2.2	159
13	Antigen-pulsed CD8α+ Dendritic Cells Generate an Immune Response after Subcutaneous Injection without Homing to the Draining Lymph Node. Journal of Experimental Medicine, 1999, 189, 593-598.	8.5	149
14	Host Selection of Microbiota via Differential Adhesion. Cell Host and Microbe, 2016, 19, 550-559.	11.0	149
15	Age at primary infection with Salmonella enterica serovar Typhimurium in the chicken influences persistence of infection and subsequent immunity to re-challenge. Veterinary Immunology and Immunopathology, 2004, 100, 151-164.	1.2	139
16	Challenges in the successful control of the avian coccidia. Vaccine, 2007, 25, 5540-5547.	3.8	133
17	The long view: <i>Salmonella</i> – the last forty years. Avian Pathology, 2012, 41, 413-420.	2.0	118
18	Temporal dynamics of the cellular, humoral and cytokine responses in chickens during primary and secondary infection withSalmonella entericaserovar Typhimurium. Avian Pathology, 2004, 33, 25-33.	2.0	115

#	Article	IF	CITATIONS
19	From The Cover: Two CD1 genes map to the chicken MHC, indicating that CD1 genes are ancient and likely to have been present in the primordial MHC. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 8668-8673.	7.1	105
20	Genetic Mapping Identifies Novel Highly Protective Antigens for an Apicomplexan Parasite. PLoS Pathogens, 2011, 7, e1001279.	4.7	104
21	Visualizing T Cell Competition for Peptide/MHC Complexes. Immunity, 2000, 13, 783-794.	14.3	102
22	Infection of the Reproductive Tract and Eggs with Salmonella enterica Serovar Pullorum in the Chicken Is Associated with Suppression of Cellular Immunity at Sexual Maturity. Infection and Immunity, 2005, 73, 2986-2990.	2.2	97
23	A Critical Role for MAPK Signalling Pathways in the Transcriptional Regulation of Toll Like Receptors. PLoS ONE, 2013, 8, e51243.	2.5	96
24	Bovine Î ³ δT Cells Are a Major Regulatory T Cell Subset. Journal of Immunology, 2014, 193, 208-222.	0.8	90
25	Early events in the thymus affect the balance of effector and regulatory T cells. Nature, 2006, 444, 1073-1077.	27.8	87
26	Intestinal Intraepithelial Lymphocytes Sustain the Epithelial Barrier Function against Eimeria vermiformis Infection. Infection and Immunity, 2006, 74, 5292-5301.	2.2	85
27	The Cinderella syndrome: why do malaria-infected cells burst at midnight?. Trends in Parasitology, 2013, 29, 10-16.	3.3	83
28	Clearance of Enteric Salmonella enterica Serovar Typhimurium in Chickens Is Independent of B-Cell Function. Infection and Immunity, 2006, 74, 1442-1444.	2.2	79
29	Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiology and Behavior, 2019, 210, 112658.	2.1	78
30	Integration, exploration, and analysis of highâ€dimensional singleâ€cell cytometry data using Spectre. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 237-253.	1.5	78
31	Mucosal T cells regulate Paneth and intermediate cell numbers in the small intestine ofT. spiralis-infected mice. Clinical and Experimental Immunology, 2001, 126, 117-125.	2.6	77
32	TLR15 Is Unique to Avian and Reptilian Lineages and Recognizes a Yeast-Derived Agonist. Journal of Immunology, 2012, 189, 4930-4938.	0.8	75
33	Antigenic Diversity in Eimeria maxima and the Influence of Host Genetics and Immunization Schedule on Cross-Protective Immunity. Infection and Immunity, 2002, 70, 2472-2479.	2.2	69
34	Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. Biochemical Society Transactions, 2007, 35, 1504-1507.	3.4	67
35	The duck toll like receptor 7: Genomic organization, expression and function. Molecular Immunology, 2008, 45, 2055-2061.	2.2	67
36	Oral infection with the Salmonella entericaserovar Gallinarum 9R attenuated live vaccine as a model to characterise immunity to fowl typhoid in the chicken. BMC Veterinary Research, 2005, 1, 2.	1.9	64

#	Article	IF	CITATIONS
37	Î ³ δT cell help of B cells is induced by repeated parasitic infection, in the absence of other T cells. Current Biology, 1996, 6, 1317-1325.	3.9	63
38	Genetic Dissection of Primary and Secondary Responses to a Widespread Natural Pathogen of the Gut, Eimeria vermiformis. Infection and Immunity, 2000, 68, 6273-6280.	2.2	53
39	A Strong Antigen-Specific T-Cell Response Is Associated with Age and Genetically Dependent Resistance to Avian Enteric Salmonellosis. Infection and Immunity, 2005, 73, 7509-7516.	2.2	53
40	Regional and global changes in TCRαβ T cell repertoires in the gut are dependent upon the complexity of the enteric microflora. Developmental and Comparative Immunology, 2010, 34, 406-417.	2.3	53
41	Carboxyfluorescein diacetate succinimidyl ester and the virgin lymphocyte: A marriage made in heaven. Immunology and Cell Biology, 1999, 77, 530-538.	2.3	52
42	Visualizing dendritic cell migration within the skin. Histochemistry and Cell Biology, 2008, 130, 1131-1146.	1.7	52
43	An αβ T-cell-independent immunoprotective response towards gut coccidia is supported by γδ cells. Immunology, 2000, 101, 325-332.	4.4	51
44	Evaluating spectral cytometry for immune profiling in viral disease. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 1165-1179.	1.5	48
45	Monitoring chicken flock behaviour provides early warning of infection by human pathogen <i>Campylobacter</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152323.	2.6	47
46	A review of a decade of lessons from one of the world's largest MPAs: conservation gains and key challenges. Marine Biology, 2020, 167, 1.	1.5	47
47	Eimeria maxima: The influence of host genotype on parasite reproduction as revealed by quantitative real-time PCR. International Journal for Parasitology, 2006, 36, 97-105.	3.1	46
48	AVIAN INNATE IMMUNE RESPONSES. , 2008, , 129-158.		45
49	Î ³ δT cells play a protective role during infection with Nippostrongylus brasiliensis by promoting goblet cell function in the small intestine. Immunology, 2011, 134, 448-458.	4.4	43
50	T cell activation: in vivo veritas. Immunology and Cell Biology, 2004, 82, 260-268.	2.3	41
51	Cross-reactive cellular and humoral immune responses to Salmonella enterica serovars Typhimurium and Enteritidis are associated with protection to heterologous re-challenge. Veterinary Immunology and Immunopathology, 2006, 114, 84-93.	1.2	41
52	Genetic analysis of the essential components of the immunoprotective response to infection with Eimeria vermiformis. International Journal for Parasitology, 1998, 28, 1061-1069.	3.1	39
53	Receding ice drove parallel expansions in Southern Ocean penguins. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 26690-26696.	7.1	35
54	Clonal Structure of Rapid-Onset MDV-Driven CD4+ Lymphomas and Responding CD8+ T Cells. PLoS Pathogens, 2011, 7, e1001337.	4.7	34

#	Article	IF	CITATIONS
55	The Potential Role of Endogenous Viral Elements in the Evolution of Bats as Reservoirs for Zoonotic Viruses. Annual Review of Virology, 2020, 7, 103-119.	6.7	34
56	Development and validation of real-time polymerase chain reaction assays specific to four species of <i>Eimeria</i> . Avian Pathology, 2008, 37, 89-94.	2.0	33
57	Parasite genetics and the immune host: recombination between antigenic types of Eimeria maxima as an entrée to the identification of protective antigens. Molecular and Biochemical Parasitology, 2004, 138, 143-152.	1.1	32
58	A Genetic and Functional Relationship between T Cells and Cellular Proliferation in the Adult Hippocampus. PLoS Biology, 2010, 8, e1000561.	5.6	32
59	Peyer's Patches Are Required for the Induction of Rapid Th1 Responses in the Gut and Mesenteric Lymph Nodes during an Enteric Infection. Journal of Immunology, 2006, 176, 7533-7541.	0.8	31
60	Sequence of a Complete Chicken BG Haplotype Shows Dynamic Expansion and Contraction of Two Gene Lineages with Particular Expression Patterns. PLoS Genetics, 2014, 10, e1004417.	3.5	31
61	Dissecting the Genomic Architecture of Resistance to Eimeria maxima Parasitism in the Chicken. Frontiers in Genetics, 2018, 9, 528.	2.3	31
62	Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota. PLoS ONE, 2016, 11, e0163932.	2.5	30
63	Amplified fragment length polymorphism analyses of Eimeria spp.: an improved process for genetic studies of recombinant parasites. Parasitology Research, 2003, 90, 473-475.	1.6	29
64	Highâ€Ðimensional Fluorescence Cytometry. Current Protocols in Immunology, 2017, 119, 5.8.1-5.8.38.	3.6	29
65	Modelling host cell availability and the crowding effect in Eimeria infections. International Journal for Parasitology, 2001, 31, 1070-1081.	3.1	28
66	Harnessing Single Cell Sorting to Identify Cell Division Genes and Regulators in Bacteria. PLoS ONE, 2013, 8, e60964.	2.5	27
67	Murine Goblet Cell Hypoplasia during Eimeria pragensis Infection is Ameliorate by Clindamycin Treatment. Journal of Veterinary Medical Science, 2005, 67, 311-315.	0.9	26
68	Genetic identification of antigens protective against coccidia. Parasite Immunology, 2006, 28, 305-314.	1.5	24
69	Innate responsiveness of CD8 memory T-cell populations nonspecifically inhibits allergic sensitization. Journal of Allergy and Clinical Immunology, 2008, 122, 1014-1021.e4.	2.9	24
70	Innate Immune Responses. , 2014, , 121-147.		24
71	Antibody response toSalmonella: its induction and role in protection against avian enteric salmonellosis. Expert Review of Anti-Infective Therapy, 2007, 5, 873-881.	4.4	23
72	The role of natural killer cells in resistance to coccidiosis: investigations in a murine model. Clinical and Experimental Immunology, 2008, 97, 273-279.	2.6	23

#	Article	IF	CITATIONS
73	Comparative micro-epidemiology of pathogenic avian influenza virus outbreaks in a wild bird population. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180259.	4.0	23
74	The influence of immunizing dose size and schedule on immunity to subsequent challenge with antigenically distinct strains ofEimeria maxima. Avian Pathology, 2005, 34, 489-494.	2.0	22
75	Host genetics determine susceptibility to avian influenza infection and transmission dynamics. Scientific Reports, 2016, 6, 26787.	3.3	22
76	Molecular archaeoparasitology identifies cultural changes in the Medieval Hanseatic trading centre of Lübeck. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180991.	2.6	21
77	Epidemiological insights from a large-scale investigation of intestinal helminths in Medieval Europe. PLoS Neglected Tropical Diseases, 2020, 14, e0008600.	3.0	20
78	Analysis of the Murine Bone Marrow Hematopoietic System Using Mass and Flow Cytometry. Methods in Molecular Biology, 2019, 1989, 159-192.	0.9	19
79	Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird. Molecular Biology and Evolution, 2020, 37, 1708-1726.	8.9	19
80	EmaxDB: Availability of a first draft genome sequence for the apicomplexan Eimeria maxima. Molecular and Biochemical Parasitology, 2012, 184, 48-51.	1.1	18
81	Interferon-Inducible Protein 16 (IFI16) Has a Broad-Spectrum Binding Ability Against ssDNA Targets: An Evolutionary Hypothesis for Antiretroviral Checkpoint. Frontiers in Microbiology, 2019, 10, 1426.	3.5	18
82	The Avian Enteric Immune System in Health and Disease. , 2014, , 227-250.		16
83	Parallel sequencing of porA reveals a complex pattern of Campylobacter genotypes that differs between broiler and broiler breeder chickens. Scientific Reports, 2019, 9, 6204.	3.3	16
84	A genetic linkage map for the apicomplexan protozoan parasite Eimeria maxima and comparison with Eimeria tenella. International Journal for Parasitology, 2011, 41, 263-270.	3.1	13
85	Factors Influencing the Abundance of the Side Population in a Human Myeloma Cell Line. Bone Marrow Research, 2011, 2011, 1-8.	1.7	13
86	Badger macrophages fail to produce nitric oxide, a key anti-mycobacterial effector molecule. Scientific Reports, 2017, 7, 45470.	3.3	11
87	Effects of Weather Conditions on Oxidative Stress, Oxidative Damage, and Antioxidant Capacity in a Wild-Living Mammal, the European Badger (<i>Meles meles</i>). Physiological and Biochemical Zoology, 2018, 91, 987-1004.	1.5	11
88	Identification of Circovirus Genome in a Chinstrap Penguin (Pygoscelis antarcticus) and Adélie Penguin (Pygoscelis adeliae) on the Antarctic Peninsula. Viruses, 2020, 12, 858.	3.3	11
89	The Relationship Between the Anticoccidial Effects of Clindamycin and the Development of Immunity in the Eimeria pragensis/Mouse Model of Large Intestinal Coccidiosis. Journal of Veterinary Medical Science, 2005, 67, 165-170.	0.9	10
90	Suppression of airway inflammation by a natural acute infection of the intestinal epithelium. Mucosal Immunology, 2009, 2, 144-155.	6.0	10

#	Article	IF	CITATIONS
91	Expression of perforin, granzyme A and Fas ligand <scp>mRNA</scp> in caecal tissues upon <i>Eimeria tenella</i> infection of naÃ ⁻ ve and immune chickens. Parasite Immunology, 2016, 38, 419-430.	1.5	10
92	Identification and Distribution of Novel Cressdnaviruses and Circular Molecules in Four Penguin Species in South Georgia and the Antarctic Peninsula. Viruses, 2020, 12, 1029.	3.3	10
93	Intestinal helminths as a biomolecular complex in archaeological research. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190570.	4.0	10
94	Adaptation and Cryptic Pseudogenization in Penguin Toll-Like Receptors. Molecular Biology and Evolution, 2022, 39, .	8.9	10
95	The Role of T Cells in the Regulation of B Cell Tolerance. International Reviews of Immunology, 1997, 15, 73-99.	3.3	9
96	Sub-clinical infection withSalmonellain chickens differentially affects behaviour and welfare in three inbred strains. British Poultry Science, 2010, 51, 703-713.	1.7	8
97	Avian T Cells. , 2014, , 91-102.		8
98	An infected chicken kidney cell co-culture ELISpot for enhanced detection of T cell responses to avian influenza and vaccination. Journal of Immunological Methods, 2015, 416, 40-48.	1.4	8
99	Early pathogenesis during infectious bursal disease in susceptible chickens is associated with changes in B cell genomic methylation and loss of genome integrity. Developmental and Comparative Immunology, 2017, 73, 169-174.	2.3	8
100	Role of Dendritic Cells in Induction of Tolerance and Immunity in Vivo. Advances in Experimental Medicine and Biology, 1997, 417, 255-263.	1.6	8
101	THE AVIAN ENTERIC IMMUNE SYSTEM IN HEALTH AND DISEASE. , 2008, , 243-271.		7
102	Biosafety during a pandemic: shared resource laboratories rise to the challenge. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 68-80.	1.5	7
103	Repertoire analysis of γδT cells in the chicken enables functional annotation of the genomic region revealing highly variable pan-tissue TCR gamma V gene usage as well as identifying public and private repertoires. BMC Genomics, 2021, 22, 719.	2.8	7
104	The erythrocyte membrane properties of beta thalassaemia heterozygotes and their consequences for Plasmodium falciparum invasion. Scientific Reports, 2022, 12, .	3.3	7
105	Experimental models linking dendritic cell lineage, phenotype and function. Immunology and Cell Biology, 2002, 80, 469-476.	2.3	6
106	Selectively targeting haemagglutinin antigen to chicken CD83 receptor induces faster and stronger immunity against avian influenza. Npj Vaccines, 2021, 6, 90.	6.0	6
107	Comparison of CpG- and UpA-mediated restriction of RNA virus replication in mammalian and avian cells and investigation of potential ZAP-mediated shaping of host transcriptome compositions. Rna, 2022, 28, 1089-1109.	3.5	6
108	Effects of oriC relocation on control of replication initiation in Bacillus subtilis. Microbiology (United Kingdom), 2009, 155, 3070-3082.	1.8	4

#	Article	IF	CITATIONS
109	Induction of lymphomas by inoculation of Marek's disease virus-derived lymphoblastoid cell lines: prevention by CVI988 vaccination. Avian Pathology, 2012, 41, 589-598.	2.0	4
110	Risk awareness during operation of analytical flow cytometers and implications throughout the <scp>COVID</scp> â€19 pandemic. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 81-89.	1.5	4
111	Reconstructing the history of helminth prevalence in the UK. PLoS Neglected Tropical Diseases, 2022, 16, e0010312.	3.0	4
112	Reverse immunodynamics: a new method for identifying targets of protective immunity. Scientific Reports, 2019, 9, 2164.	3.3	3
113	Avian T cells: Antigen Recognition and Lineages. , 2022, , 121-134.		3
114	The avian enteric immune system in health and disease. , 2022, , 303-326.		1
115	Pattern recognition receptors. , 2022, , 231-248.		1
116	Can good broiler flock welfare prevent colonization by Campylobacter?. Poultry Science, 2021, 100, 101420.	3.4	0
117	Title is missing!. , 2020, 14, e0008600.		0
118	Title is missing!. , 2020, 14, e0008600.		0
119	Title is missing!. , 2020, 14, e0008600.		0
120	Title is missing!. , 2020, 14, e0008600.		0
121	High resolution parallel sequencing reveals multistrain Campylobacter in broiler chicken flocks testing â€~negative' by conventional culture methods: implications for control of Campylobacter infection_Poultry Science_2022_101_102048	3.4	0