Xun Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635935/publications.pdf

Version: 2024-02-01

155	8,225	52	85
papers	citations	h-index	g-index
156	156	156	10006
156	156	156	10336
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Epitaxial growth of bilayer Bi(110) on two-dimensional ferromagnetic Fe ₃ GeTe ₂ . Journal of Physics Condensed Matter, 2022, 34, 074003.	0.7	5
2	Toward enhanced alkaline hydrogen electrocatalysis with transition metal-functionalized nitrogen-doped carbon supports. Chinese Journal of Catalysis, 2022, 43, 1351-1359.	6.9	6
3	Liquid-Metal-Mediated Electrocatalyst Support Engineering toward Enhanced Water Oxidation Reaction. Nanomaterials, 2022, 12, 2153.	1.9	1
4	Galliumâ€based liquid metals for lithiumâ€ion batteries. , 2022, 1, 354-372.		39
5	Progress and perspectives of bismuth oxyhalides in catalytic applications. Materials Today Physics, 2021, 16, 100294.	2.9	37
6	Nearâ€Infraredâ€Driven Photocatalysts: Design, Construction, and Applications. Small, 2021, 17, e1904107.	5.2	63
7	Gallium–Indium–Tin Liquid Metal Nanodroplet-Based Anisotropic Conductive Adhesives for Flexible Integrated Electronics. ACS Applied Nano Materials, 2021, 4, 550-557.	2.4	27
8	Morphology engineering of atomic layer defect-rich CoSe ₂ nanosheets for highly selective electrosynthesis of hydrogen peroxide. Journal of Materials Chemistry A, 2021, 9, 21340-21346.	5.2	16
9	Application of Scanning Tunneling Microscopy in Electrocatalysis and Electrochemistry. Electrochemical Energy Reviews, 2021, 4, 249-268.	13.1	26
10	General Programmable Growth of Hybrid Core–Shell Nanostructures with Liquid Metal Nanodroplets. Advanced Materials, 2021, 33, e2008024.	11.1	28
11	Nickel single atom-decorated carbon nanosheets as multifunctional electrocatalyst supports toward efficient alkaline hydrogen evolution. Nano Energy, 2021, 83, 105850.	8.2	66
12	Germanene Nanosheets: Achieving Superior Sodiumâ€ion Storage via Pseudointercalation Reactions. Small Structures, 2021, 2, 2100041.	6.9	20
13	Kondo Holes in the Two-Dimensional Itinerant Ising Ferromagnet Fe ₃ GeTe ₂ . Nano Letters, 2021, 21, 6117-6123.	4.5	23
14	Atomically dispersed S-Fe-N4 for fast kinetics sodium-sulfur batteries via a dual function mechanism. Cell Reports Physical Science, 2021, 2, 100531.	2.8	31
15	Recent Progress on 2D Kagome Magnets: Binary T <i>_m</i> Sn <i>_n</i> (T = Fe,) Tj ETQq1	1 1 0.7843 1.8	14 rgBT /
16	Electric-Field-Driven Negative Differential Conductance in 2D van der Waals Ferromagnet Fe ₃ GeTe ₂ . Nano Letters, 2021, 21, 9233-9239.	4.5	10
17	Understanding the structural and chemical evolution of layered potassium titanates for sodium ion batteries. Energy Storage Materials, 2020, 25, 502-509.	9.5	17
18	High-performance room-temperature sodium–sulfur battery enabled by electrocatalytic sodium polysulfides full conversion. Energy and Environmental Science, 2020, 13, 562-570.	15.6	163

#	Article	IF	CITATIONS
19	Liquid metals and their hybrids as stimulus–responsive smart materials. Materials Today, 2020, 34, 92-114.	8.3	78
20	Boron Nitride Nanotubes for Ammonia Synthesis: Activation by Filling Transition Metals. Journal of the American Chemical Society, 2020, 142, 308-317.	6.6	105
21	Application of organic-inorganic hybrids in lithium batteries. Materials Today Physics, 2020, 15, 100289.	2.9	15
22	Promoted Photocharge Separation in 2D Lateral Epitaxial Heterostructure for Visibleâ€Lightâ€Driven CO ₂ Photoreduction. Advanced Materials, 2020, 32, e2004311.	11.1	74
23	Multifunctional Active enterâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie, 2020, 132, 14641-14648.	1.6	17
24	Multifunctional Activeâ€Centerâ€Transferable Platinum/Lithium Cobalt Oxide Heterostructured Electrocatalysts towards Superior Water Splitting. Angewandte Chemie - International Edition, 2020, 59, 14533-14540.	7.2	152
25	Hydrogen Terminated Germanene for a Robust Selfâ€Powered Flexible Photoelectrochemical Photodetector. Small, 2020, 16, e2000283.	5.2	58
26	Experimental Realization of Two-Dimensional Buckled Lieb Lattice. Nano Letters, 2020, 20, 2537-2543.	4.5	12
27	In-situ grafting of N-doped carbon nanotubes with Ni encapsulation onto MOF-derived hierarchical hybrids for efficient electrocatalytic hydrogen evolution. Carbon, 2020, 163, 178-185.	5.4	56
28	Immobilized trimeric metal clusters: A family of the smallest catalysts for selective CO2 reduction toward multi-carbon products. Nano Energy, 2020, 76, 105049.	8.2	56
29	Reversible Potassium Intercalation in Blue Phosphorene–Au Network Driven by an Electric Field. Journal of Physical Chemistry Letters, 2020, 11, 5584-5590.	2.1	5
30	H-infinity adaptive observer enhancements for vehicle chassis dynamics-based navigation sensor fault construction. International Journal of Advanced Robotic Systems, 2020, 17, 172988142090421.	1.3	1
31	Audiovisual speech recognition: A review and forecast. International Journal of Advanced Robotic Systems, 2020, 17, 172988142097608.	1.3	10
32	General Synthetic Strategy for Pomegranate-like Transition-Metal Phosphides@N-Doped Carbon Nanostructures with High Lithium Storage Capacity., 2019, 1, 265-271.		35
33	Engineering additional edge sites on molybdenum dichalcogenides toward accelerated alkaline hydrogen evolution kinetics. Nanoscale, 2019, 11, 717-724.	2.8	37
34	Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A, 2019, 7, 13629-13634.	5.2	30
35	Rational design of two-dimensional hybrid Co/N-doped carbon nanosheet arrays for efficient bi-functional electrocatalysis. Sustainable Energy and Fuels, 2019, 3, 1757-1763.	2.5	11
36	Electronic Structure Engineering of LiCoO ₂ toward Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2019, 9, 1803482.	10.2	85

#	Article	IF	CITATIONS
37	Two dimensional bismuth-based layered materials for energy-related applications. Energy Storage Materials, 2019, 19, 446-463.	9.5	89
38	2D Heterostructures: Monolayer Epitaxial Heterostructures for Selective Visibleâ€Lightâ€Driven Photocatalytic NO Oxidation (Adv. Funct. Mater. 15/2019). Advanced Functional Materials, 2019, 29, 1970100.	7.8	1
39	A S/N-doped high-capacity mesoporous carbon anode for Na-ion batteries. Journal of Materials Chemistry A, 2019, 7, 11976-11984.	5.2	78
40	Role of Charge Density Wave in Monatomic Assembly in Transition Metal Dichalcogenides. Advanced Functional Materials, 2019, 29, 1900367.	7.8	28
41	Rayleigh-Instability-Induced Bismuth Nanorod@Nitrogen-Doped Carbon Nanotubes as A Long Cycling and High Rate Anode for Sodium-Ion Batteries. Nano Letters, 2019, 19, 1998-2004.	4.5	142
42	Recent Progress on Germanene and Functionalized Germanene: Preparation, Characterizations, Applications, and Challenges. Small, 2019, 15, e1805147.	5.2	100
43	Lotus rhizome-like S/N–C with embedded WS ₂ for superior sodium storage. Journal of Materials Chemistry A, 2019, 7, 25932-25943.	5.2	39
44	Electrochemical potassium/lithium-ion intercalation into TiSe2: Kinetics and mechanism. Energy Storage Materials, 2019, 16, 512-518.	9.5	84
45	Promoting photoreduction properties via synergetic utilization between plasmonic effect and highly active facet of BiOCl. Nano Energy, 2019, 57, 398-404.	8.2	52
46	Monolayer Epitaxial Heterostructures for Selective Visibleâ€Lightâ€Driven Photocatalytic NO Oxidation. Advanced Functional Materials, 2019, 29, 1808084.	7.8	76
47	Boosting Visible-Light-Driven Photo-oxidation of BiOCl by Promoted Charge Separation via Vacancy Engineering. ACS Sustainable Chemistry and Engineering, 2019, 7, 3010-3017.	3.2	101
48	Selective Ferroelectric BiOI/Bi ₄ Ti ₃ O ₁₂ Heterostructures for Visible Light-Driven Photocatalysis. Journal of Physical Chemistry C, 2019, 123, 517-525.	1.5	36
49	Recent progress on liquid metals and their applications. Advances in Physics: X, 2018, 3, 1446359.	1.5	85
50	Defect Sites-Rich Porous Carbon with Pseudocapacitive Behaviors as an Ultrafast and Long-Term Cycling Anode for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 9353-9361.	4.0	91
51	Synergistically Enhanced Interfacial Interaction to Polysulfide via N,O Dual-Doped Highly Porous Carbon Microrods for Advanced Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 13573-13580.	4.0	54
52	Activating Titania for Efficient Electrocatalysis by Vacancy Engineering. ACS Catalysis, 2018, 8, 4288-4293.	5.5	141
53	Manipulating the Architecture of Atomically Thin Transition Metal (Hydr)oxides for Enhanced Oxygen Evolution Catalysis. ACS Nano, 2018, 12, 1878-1886.	7.3	57
54	New insights into understanding the exceptional electrochemical performance of P2-type manganese-based layered oxide cathode for sodium ion batteries. Energy Storage Materials, 2018, 15, 257-265.	9.5	86

#	Article	IF	CITATIONS
55	Active-Site-Enriched Iron-Doped Nickel/Cobalt Hydroxide Nanosheets for Enhanced Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 5382-5390.	5. 5	311
56	Microscopic origin of highly enhanced supercurrent in 122 pnictide superconductor. Journal of Alloys and Compounds, 2018, 754, 1-6.	2.8	3
57	Realization of flat band with possible nontrivial topology in electronic Kagome lattice. Science Advances, 2018, 4, eaau4511.	4.7	131
58	Metal–Organic Framework-Derived Sea-Cucumber-like FeS ₂ @C Nanorods with Outstanding Pseudocapacitive Na-Ion Storage Properties. ACS Applied Energy Materials, 2018, 1, 6234-6241.	2.5	47
59	Boosting Sodium Storage of Doubleâ€Shell Sodium Titanate Microspheres Constructed from 2D Ultrathin Nanosheets via Sulfur Doping. Advanced Materials, 2018, 30, e1804157.	11.1	79
60	Electronic Band Engineering in Elemental 2D Materials. Advanced Materials Interfaces, 2018, 5, 1800749.	1.9	16
61	A Liquidâ€Metalâ€Based Magnetoactive Slurry for Stimuliâ€Responsive Mechanically Adaptive Electrodes. Advanced Materials, 2018, 30, e1802595.	11.1	106
62	Recent Development of Zeolitic Imidazolate Frameworks (ZIFs) Derived Porous Carbon Based Materials as Electrocatalysts. Advanced Energy Materials, 2018, 8, 1801257.	10.2	242
63	Recent progress on silicon-based anode materials for practical lithium-ion battery applications. Energy Storage Materials, 2018, 15, 422-446.	9.5	292
64	Dirac Signature in Germanene on Semiconducting Substrate. Advanced Science, 2018, 5, 1800207.	5 . 6	59
65	Band Gap Modulated by Electronic Superlattice in Blue Phosphorene. ACS Nano, 2018, 12, 5059-5065.	7.3	92
66	Comprehensive New Insights and Perspectives into Tiâ€Based Anodes for Nextâ€Generation Alkaline Metal (Na ⁺ , K ⁺) Ion Batteries. Advanced Energy Materials, 2018, 8, 1801888.	10.2	142
67	Cooperative Electron–Phonon Coupling and Buckled Structure in Germanene on Au(111). ACS Nano, 2017, 11, 3553-3559.	7.3	75
68	Construction of 2D lateral pseudoheterostructures by strain engineering. 2D Materials, 2017, 4, 025102.	2.0	31
69	Role of Atomic Interaction in Electronic Hybridization in Two-Dimensional Ag ₂ Ge Nanosheets. Journal of Physical Chemistry C, 2017, 121, 16754-16760.	1.5	13
70	Silicene: A Promising Anode for Lithiumâ€lon Batteries. Advanced Materials, 2017, 29, 1606716.	11.1	179
71	Enhancement of charge separation in ferroelectric heterogeneous photocatalyst Bi ₄ (SiO ₄) ₃ /Bi ₂ SiO ₅ nanostructures. Dalton Transactions, 2017, 46, 15582-15588.	1.6	25
72	Atomically thin non-layered nanomaterials for energy storage and conversion. Chemical Society Reviews, 2017, 46, 7338-7373.	18.7	162

#	Article	IF	Citations
73	Hierarchical (Ni,Co)Se 2 /Carbon Hollow Rhombic Dodecahedra Derived from Metal-Organic Frameworks for Efficient Water-Splitting Electrocatalysis. Electrochimica Acta, 2017, 250, 167-173.	2.6	63
74	Enhanced energy transfer in heterogeneous nanocrystals for near infrared upconversion photocurrent generation. Nanoscale, 2017, 9, 18661-18667.	2.8	14
75	Nanodroplets for Stretchable Superconducting Circuits. Advanced Functional Materials, 2016, 26, 8111-8118.	7.8	158
76	Observation of van Hove Singularities in Twisted Silicene Multilayers. ACS Central Science, 2016, 2, 517-521.	5 . 3	37
77	MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting. Journal of Materials Chemistry A, 2016, 4, 15148-15155.	5.2	291
78	Magnetic and levitation characteristics of bulk high-temperature superconducting magnets above a permanent magnet guideway. Superconductor Science and Technology, 2016, 29, 095009.	1.8	12
79	Quasi-freestanding epitaxial silicene on $Ag(111)$ by oxygen intercalation. Science Advances, 2016, 2, e1600067.	4.7	138
80	A ferroelectric photocatalyst Ag ₁₀ Si ₄ O ₁₃ with visible-light photooxidation properties. Journal of Materials Chemistry A, 2016, 4, 10992-10999.	5.2	46
81	Magnetic field actuated manipulation and transfer of oil droplets on a stable underwater superoleophobic surface. Physical Chemistry Chemical Physics, 2016, 18, 16202-16207.	1.3	20
82	Magnetic Characteristics of Single-Block and Multi-Block Nd-Fe-B Permanent Magnets at Low Temperature. IEEE Magnetics Letters, 2016, 7, 1-5.	0.6	1
83	Metal–silicene interaction studied by scanning tunneling microscopy. Journal of Physics Condensed Matter, 2016, 28, 034002.	0.7	9
84	Adsorption of Molecules on Silicene. Springer Series in Materials Science, 2016, , 215-242.	0.4	1
85	Investigation of electron-phonon coupling in epitaxial silicene by <i>in situ</i> Raman spectroscopy. Physical Review B, 2015, 91, .	1.1	67
86	Pauli-limited effect in the magnetic phase diagram of FeSe <i>x</i> Te1 \hat{a} ° <i>x</i> thin films. Applied Physics Letters, 2015, 107, .	1.5	9
87	Modulation of Photocatalytic Properties by Strain in 2D BiOBr Nanosheets. ACS Applied Materials & Samp; Interfaces, 2015, 7, 27592-27596.	4.0	130
88	MgB ₂ superconducting joints for persistent current operation. Superconductor Science and Technology, 2015, 28, 065017.	1.8	18
89	Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method. Journal of Alloys and Compounds, 2015, 644, 900-905.	2.8	17
90	Characterisation of nano-grains in MgB2 superconductors by transmission Kikuchi diffraction. Scripta Materialia, 2015, 101, 36-39.	2.6	15

#	Article	IF	CITATIONS
91	Improvements in the Dispersion of Nanosilver in a MgB ₂ Matrix through a Graphene Oxide Net. Journal of Physical Chemistry C, 2015, 119, 10631-10640.	1.5	5
92	Honeycomb silicon: a review of silicene. Science Bulletin, 2015, 60, 1551-1562.	4.3	74
93	Enhancement of critical current of SiC and malic acid codoped MgB2â^•Fe wires. International Journal of Modern Physics B, 2015, 29, 1542032.	1.0	5
94	Epitaxial growth mechanism of silicene on Ag(111). , 2014, , .		3
95	On the roles of graphene oxide doping for enhanced supercurrent in MgB ₂ based superconductors. Nanoscale, 2014, 6, 6166-6172.	2.8	40
96	Tuning the Band Gap in Silicene by Oxidation. ACS Nano, 2014, 8, 10019-10025.	7.3	175
97	Unabridged phase diagram for single-phased FeSexTe1-x thin films. Scientific Reports, 2014, 4, 7273.	1.6	38
98	Effects of Oxygen Adsorption on the Surface State of Epitaxial Silicene on Ag(111). Scientific Reports, 2014, 4, 7543.	1.6	70
99	Graphene Micro-Substrate Induced High Electron-Phonon Coupling in \$hbox{MgB}_{2}\$. IEEE Transactions on Applied Superconductivity, 2013, 23, 7000104-7000104.	1.1	16
100	Effect of Sintering Temperature on the Superconducting Properties of Graphene Doped \$hbox{MgB}_{2}\$. IEEE Transactions on Applied Superconductivity, 2013, 23, 7100604-7100604.	1.1	19
101	A significant improvement in both low- and high-field performance of MgB2 superconductors through graphene oxide doping. Scripta Materialia, 2013, 69, 437-440.	2.6	22
102	Structurally homogeneous MgB2 superconducting wires through economical wet mixing process. Materials Letters, 2013, 91, 356-358.	1.3	4
103	A comprehensive study of the pinning mechanisms of MgB ₂ wires treated with malic acid and their relationships with lattice defects. Superconductor Science and Technology, 2013, 26, 085013.	1.8	10
104	Reaction method control of impurity scattering in C-doped MgB2: proving the role of defects besides C substitution level. Superconductor Science and Technology, 2013, 26, 125018.	1.8	7
105	Evidence for transformation from $\langle i \rangle \hat{I} T c \langle i \rangle$ to $\langle i \rangle \hat{I} 1 \langle i \rangle$ pinning in MgB2 by graphene oxide doping with improved low and high field $\langle i \rangle J c \langle i \rangle$ and pinning potential. Applied Physics Letters, 2013, 102, .	1.5	35
106	Calorimetric AC loss measurement of MgB ₂ superconducting tape in an alternating transport current and direct magnetic field. Superconductor Science and Technology, 2012, 25, 115016.	1.8	6
107	The Effects of Graphene Doping on the In-Field <i>J_c</i> of MgB ₂ Wires. Journal of Nanoscience and Nanotechnology, 2012, 12, 1402-1405.	0.9	6
108	A significant improvement in the superconducting properties of MgB2 by co-doping with graphene and nano-SiC. Scripta Materialia, 2012, 67, 802-805.	2.6	23

#	Article	IF	Citations
109	The effect of reduced graphene oxide addition on the superconductivity of MgB2. Journal of Materials Chemistry, 2012, 22, 13941.	6.7	43
110	Magnetoelectric properties of MgB <inf>2</inf> superconductor by SiC doping., 2011,,.		0
111	Plenary talk - strain engineering for improvement in J <inf>c</inf> and H <inf> and H<inf>c2</inf> in MgB<inf>2</inf>. , 2011, , .</inf>		0
112	Superconducting Properties of Graphene Doped Magnesium Diboride., 2011,,.		2
113	Evaluation of carbon incorporation and strain of doped MgB2 superconductor by Raman spectroscopy. Scripta Materialia, 2011, 64, 323-326.	2.6	9
114	Flux pinning mechanisms in graphene-doped MgB2 superconductors. Scripta Materialia, 2011, 65, 634-637.	2.6	39
115	Graphene micro-substrate-induced π gap expansion in MgB2. Acta Materialia, 2011, 59, 7268-7276.	3.8	17
116	Sulfur-graphene composite for rechargeable lithium batteries. Journal of Power Sources, 2011, 196, 7030-7034.	4.0	362
117	Improving Superconducting Properties of MgB\$_{2}\$ by Graphene Doping. IEEE Transactions on Applied Superconductivity, 2011, 21, 2686-2689.	1.1	26
118	Evolution of Electromagnetic Properties and Microstructure With Sintering Temperature for \${hbox {MgB}}_{2}/{hbox {Fe}}\$ Wires Made by Combined In-Situ/Ex-Situ Process. IEEE Transactions on Applied Superconductivity, 2011, 21, 2635-2638.	1.1	8
119	Raman Spectroscopy: Alternate Method for Strain and Carbon Substitution Study in \${m MgB}_{2}\$. IEEE Transactions on Applied Superconductivity, 2011, 21, 2623-2626.	1.1	1
120	Transport critical current of MgB ₂ wires: pulsed current of varying rate compared to direct current method. Superconductor Science and Technology, 2011, 24, 105009.	1.8	5
121	The effects of C substitution and disorder on the field dependent critical current density in MgB2 with nano-SiC additions. Physica C: Superconductivity and Its Applications, 2010, 470, 1211-1215.	0.6	2
122	Graphene doping to enhance the flux pinning and supercurrent carrying ability of a magnesium diboride superconductor. Superconductor Science and Technology, 2010, 23, 085003.	1.8	44
123	Superconducting transition width under magnetic field in MgB2 polycrystalline samples. Journal of Applied Physics, 2010, 108, 093907.	1.1	7
124	Superconducting Properties of \${m MgB}_{2}\$ Wire Using Ball-Milled Low Purity Boron. IEEE Transactions on Applied Superconductivity, 2009, 19, 2714-2717.	1.1	0
125	A correlation between transport current density and grain connectivity in MgB2/Fe wire made from ball-milled boron. Journal of Applied Physics, 2009, 105, .	1.1	60
126	Doubly hybrid density functional for accurate descriptions of nonbond interactions, thermochemistry, and thermochemical kinetics. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4963-4968.	3.3	332

#	Article	IF	CITATIONS
127	CRITICAL CURRENT DENSITY PERFORMANCE OF MALIC ACID DOPED MAGNESIUM DIBORIDE WIRES AT DIFFERENT OPERATING TEMPERATURES. International Journal of Modern Physics B, 2009, 23, 3497-3502.	1.0	O
128	Determination of the relative influences of carbon doping and disorder on field and temperature dependent critical current density of MgB ₂ . Superconductor Science and Technology, 2009, 22, 125005.	1.8	8
129	Lattice Parameter, Lattice Disorder and Resistivity of Carbohydrate Doped MgB2 and Their Correlation with the Transition Temperature. Journal of Nanoscience and Nanotechnology, 2009, 9, 7477-80.	0.9	4
130	Influence of intermediate annealing on the microstructure of in situ MgB2/Fe wire. Physica C: Superconductivity and Its Applications, 2008, 468, 1825-1828.	0.6	5
131	Phase transformation and superconducting properties of MgB2 using ball-milled low purity boron. Journal of Applied Physics, 2008, 103, .	1.1	53
132	Significant improvement of <i>J</i> _c in MgB ₂ bulk superconductor using ball-milled high-purity crystalline boron. Superconductor Science and Technology, 2008, 21, 115004.	1.8	16
133	Properties of pure and carbon sphere doped MgB2prepared from low grade boron powders. Superconductor Science and Technology, 2008, 21, 065006.	1.8	5
134	Influence of disorder on the in-field Jc of MgB2 wires using highly active pyrene. Applied Physics Letters, 2008, 92, .	1.5	33
135	Effect of sintering temperature on structural defects and superconducting properties in MgB2+C4H6O5. Journal of Physics: Conference Series, 2008, 97, 012066.	0.3	1
136	Enhancement of flux pinning in a MgB2superconductor doped with tartaric acid. Superconductor Science and Technology, 2007, 20, 112-116.	1.8	34
137	Systematic study of a MgB2+C4H6O5superconductor prepared by the chemical solution route. Superconductor Science and Technology, 2007, 20, 715-719.	1.8	58
138	Effect of processing temperature on high field critical current density and upper critical field of nanocarbon doped MgB2. Applied Physics Letters, 2007, 90, 122502.	1.5	39
139	Influence of Ball-Milled Low Purity Boron Powder on the Superconductivity of \${m MgB}_{2}\$. IEEE Transactions on Applied Superconductivity, 2007, 17, 2782-2785.	1.1	8
140	Effect of Carbon Substitution on the Superconducting Properties of \${m MgB}_{2}\$ Doped With Multi-Walled Carbon Nanotubes and Nano Carbon. IEEE Transactions on Applied Superconductivity, 2007, 17, 2929-2932.	1.1	16
141	The effects of sintering temperature on superconductivity in MgB2/Fe wires. Superconductor Science and Technology, 2007, 20, 448-451.	1.8	75
142	Benzoic Acid Doping to Enhance Electromagnetic Properties of \${m MgB}_{2}\$ Superconductors. IEEE Transactions on Applied Superconductivity, 2007, 17, 2778-2781.	1.1	9
143	Significant enhancement of <i>H</i> _{c2} and <i>H</i> _{irr} in MgB ₂ +C ₄ H ₆ O ₅ bulks at a low sintering temperature of 600 °C. Superconductor Science and Technology, 2007, 20, L51-L54.	1.8	35
144	Improvement of Upper Critical Field and Critical Current Density in Single Walled CNT Doped $\frac{MgB}_{2}/\frac{hbox{Fe}}$ Wires. IEEE Transactions on Applied Superconductivity, 2007, 17, 2907-2910.	1.1	4

#	Article	IF	CITATIONS
145	Effect of magnetic field processing on the microstructure of micronsize Zn doped MgB2. Physica C: Superconductivity and Its Applications, 2007, 460-462, 310-311.	0.6	5
146	Enhancement of critical current density and irreversibility field by nano-carbon substitution in MgB2. Physica C: Superconductivity and Its Applications, 2007, 460-462, 568-569.	0.6	11
147	Effect of Boron powder purity on superconducting properties of bulk MgB2. Physica C: Superconductivity and Its Applications, 2007, 460-462, 602-603.	0.6	9
148	Superconductivity of MgB2 with embedded multiwall carbon nanotube. Physica C: Superconductivity and Its Applications, 2006, 449, 133-138.	0.6	26
149	Controllable Synthesis and Growth Model of Amorphous Silicon Nanotubes with Periodically Dome-Shaped Interiors. Advanced Materials, 2006, 18, 228-234.	11.1	33
150	Effect of boron powder purity on superconducting properties of MgB2. Superconductor Science and Technology, 2006, 19, 466-469.	1.8	48
151	ImprovedJcof MgB2superconductor by ball milling using different media. Superconductor Science and Technology, 2006, 19, L47-L50.	1.8	56
152	Control of nano carbon substitution for enhancing the critical current density in MgB2. Superconductor Science and Technology, 2006, 19, 596-599.	1.8	122
153	The doping effect of multiwall carbon nanotube on MgB2â^•Fe superconductor wire. Journal of Applied Physics, 2006, 100, 013908.	1.1	58
154	Enhancement of in-field Jc in MgB2â^•Fe wire using single- and multiwalled carbon nanotubes. Applied Physics Letters, 2006, 89, 122510.	1.5	49
155	Recent advanced skeletons in sodium metal anodes. Energy and Environmental Science, 0, , .	15.6	69