
Shaojuan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635905/publications.pdf Version: 2024-02-01

<u> Снаошал II</u>

#	Article	IF	CITATIONS
1	Effects of interlayer coupling on the excitons and electronic structures of WS2/hBN/MoS2 van der Waals heterostructures. Nano Research, 2022, 15, 2674-2681.	5.8	20
2	Perspectives of 2D Materials for Optoelectronic Integration (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, .	7.8	0
3	Perspectives of 2D Materials for Optoelectronic Integration. Advanced Functional Materials, 2022, 32,	7.8	62
4	Multifunctional Sensors Based on Doped Indium Oxide Nanocrystals. ACS Applied Materials & Interfaces, 2022, 14, 24648-24658.	4.0	5
5	The rise of 2D materials/ferroelectrics for next generation photonics and optoelectronics devices. APL Materials, 2022, 10, .	2.2	23
6	Probing the dynamic structural changes of <scp>DNA</scp> using ultrafast laser pulse in grapheneâ€based optofluidic device. InformaÄnÃ-Materiály, 2021, 3, 316-326.	8.5	4
7	A graphene–Mo ₂ C heterostructure for a highly responsive broadband photodetector. Physical Chemistry Chemical Physics, 2021, 23, 23024-23031.	1.3	1
8	Efficient graphene in-plane homogeneous p-n-p junction based infrared photodetectors with low dark current. Science China Information Sciences, 2021, 64, 1.	2.7	6
9	The Impact of Precursor Ratio on the Synthetic Production, Surface Chemistry, and Photovoltaic Performance of CsPbl ₃ Perovskite Quantum Dots. Solar Rrl, 2021, 5, 2100090.	3.1	17
10	Quasiâ€Ordered Nanoforests with Hybrid Plasmon Resonances for Broadband Absorption and Photodetection. Advanced Functional Materials, 2021, 31, 2102840.	7.8	22
11	Quasiâ€Ordered Nanoforests with Hybrid Plasmon Resonances for Broadband Absorption and Photodetection (Adv. Funct. Mater. 38/2021). Advanced Functional Materials, 2021, 31, 2170279.	7.8	3
12	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics. Advanced Functional Materials, 2021, 31, 2107363.	7.8	23
13	Research development of 2D materials based photodetectors towards midâ€infrared regime. Nano Select, 2021, 2, 527-540.	1.9	17
14	Recent Progress on Metalâ€Based Nanomaterials: Fabrications, Optical Properties, and Applications in Ultrafast Photonics (Adv. Funct. Mater. 49/2021). Advanced Functional Materials, 2021, 31, 2170364.	7.8	1
15	Graphene plasmonic nanoresonators/graphene heterostructures for efficient room-temperature infrared photodetection. Journal of Semiconductors, 2020, 41, 072907.	2.0	9
16	Highly stable and repeatable femtosecond soliton pulse generation from saturable absorbers based on two-dimensional Cu3â^'xP nanocrystals. Frontiers of Optoelectronics, 2020, 13, 139-148.	1.9	13
17	Broad spectral tuning of ultra-low-loss polaritons in a van der Waals crystal by intercalation. Nature Materials, 2020, 19, 964-968.	13.3	129
18	Graphene Heterostructure Integrated Optical Fiber Bragg Grating for Light Motion Tracking and Ultrabroadband Photodetection from 400 nm to 10.768 Âμm. Advanced Functional Materials, 2019, 29, 1807274.	7.8	26

Shaojuan Li

#	Article	IF	CITATIONS
19	Ultrathin 2D Transition Metal Carbides for Ultrafast Pulsed Fiber Lasers. ACS Photonics, 2018, 5, 1808-1816.	3.2	148
20	Bias-switchable negative and positive photoconductivity in 2D FePS ₃ ultraviolet photodetectors. Nanotechnology, 2018, 29, 244001.	1.3	67
21	Wafer-Scale Fabrication of Two-Dimensional PtS ₂ /PtSe ₂ Heterojunctions for Efficient and Broad band Photodetection. ACS Applied Materials & Interfaces, 2018, 10, 40614-40622.	4.0	110
22	In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal. Nature, 2018, 562, 557-562.	13.7	506
23	Ytterbium-doped fiber laser passively mode locked by evanescent field interaction with CH ₃ NH ₃ SnI ₃ perovskite saturable absorber. Journal Physics D: Applied Physics, 2018, 51, 375106.	1.3	25
24	Controllable Synthesis of 2D Perovskite on Different Substrates and Its Application as Photodetector. Nanomaterials, 2018, 8, 591.	1.9	20
25	High performance photodetector based on 2D CH ₃ NH ₃ PbI ₃ perovskite nanosheets. Journal Physics D: Applied Physics, 2017, 50, 094002.	1.3	60
26	Emerging Trends in Phosphorene Fabrication towards Next Generation Devices. Advanced Science, 2017, 4, 1600305.	5.6	285
27	Near-Infrared Photodetectors Based on MoTe ₂ /Graphene Heterostructure with High Responsivity and Flexibility. Small, 2017, 13, 1700268.	5.2	200
28	Solutionâ€Processed Extremely Efficient Multicolor Perovskite Lightâ€Emitting Diodes Utilizing Doped Electron Transport Layer. Advanced Functional Materials, 2017, 27, 1606874.	7.8	96
29	Two-Dimensional CH ₃ NH ₃ PbI ₃ Perovskite Nanosheets for Ultrafast Pulsed Fiber Lasers. ACS Applied Materials & Interfaces, 2017, 9, 12759-12765.	4.0	296
30	Highly Efficient and Air-Stable Infrared Photodetector Based on 2D Layered Graphene–Black Phosphorus Heterostructure. ACS Applied Materials & Interfaces, 2017, 9, 36137-36145.	4.0	185
31	Infrared Nanoimaging Reveals the Surface Metallic Plasmons in Topological Insulator. ACS Photonics, 2017, 4, 3055-3062.	3.2	27
32	Flexible Broadband Graphene Photodetectors Enhanced by Plasmonic Cu _{3â^'} <i>_x</i> P Colloidal Nanocrystals. Small, 2017, 13, 1701881.	5.2	63
33	Fieldâ€Induced nâ€Doping of Black Phosphorus for CMOS Compatible 2D Logic Electronics with High Electron Mobility. Advanced Functional Materials, 2017, 27, 1702211.	7.8	95
34	The Roadmap of Grapheneâ€Based Optical Biochemical Sensors. Advanced Functional Materials, 2017, 27, 1603918.	7.8	68
35	Large cale Production of Bismuth Chalcogenide and Graphene Heterostructure and Its Application for Flexible Broadband Photodetector. Advanced Electronic Materials, 2016, 2, 1600077.	2.6	33
36	Optoelectronic investigation of monolayer MoS2/WSe2 vertical heterojunction photoconversion devices. Nano Energy, 2016, 30, 260-266.	8.2	31

Shaojuan Li

#	Article	IF	CITATIONS
37	Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27, 462001.	1.3	259
38	Scalable Production of a Few-Layer MoS ₂ /WS ₂ Vertical Heterojunction Array and Its Application for Photodetectors. ACS Nano, 2016, 10, 573-580.	7.3	362
39	Graphene Nanobubbles: A New Optical Nonlinear Material. Advanced Optical Materials, 2015, 3, 744-749.	3.6	52
40	Raman Spectroscopy of Two-Dimensional Bi2TexSe3 â^' x Platelets Produced by Solvothermal Method. Materials, 2015, 8, 5007-5017.	1.3	68
41	Broadband Photodetectors Based on Graphene–Bi ₂ Te ₃ Heterostructure. ACS Nano, 2015, 9, 1886-1894.	7.3	338
42	Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain. Advanced Optical Materials, 2015, 3, 1389-1396.	3.6	240
43	Growth of large-area atomically thin MoS_2 film via ambient pressure chemical vapor deposition. Photonics Research, 2015, 3, 110.	3.4	17
44	A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7, 20249-20255.	2.8	99
45	Low-Temperature ZnO TFTs Fabricated by Reactive Sputtering of Metallic Zinc Target. IEEE Transactions on Electron Devices, 2012, 59, 2555-2558.	1.6	10
46	Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors. Chinese Physics Letters, 2012, 29, 018501.	1.3	1