
Thomas Poisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635734/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic Modifications of the Linkage Region of Proteoglycans and Impact on CSGalNAcTâ€1. European Journal of Organic Chemistry, 2022, 2022, .	2.4	0
2	Fluorocyclopropane-Containing Proline Analogue: Synthesis and Conformation of an Item in the Peptide Chemist's Toolbox. ACS Omega, 2022, 7, 4868-4878.	3.5	4
3	Electrochemical Hydrosilylation of Alkynes. ACS Organic & Inorganic Au, 2022, 2, 148-152.	4.0	17
4	Flow synthesis of an Î \pm -amino boronic ester as a key precursor of bortezomib drug. Reaction Chemistry and Engineering, 2022, 7, 1285-1288.	3.7	2
5	A multi-step continuous flow synthesis of pomalidomide. Journal of Flow Chemistry, 2022, 12, 383-387.	1.9	2
6	Catalytic Enantioselective Synthesis of Functionalized Cyclopropanes from αâ€Substituted Allyl Sulfones with Donorâ€Acceptor or Diacceptor Diazo Reagents. Chemistry - A European Journal, 2022, 28,	3.3	3
7	Catalytic Asymmetric Syntheses of Alkylidenecyclopropanes from Allenoates with Donorâ€Acceptor and Diacceptor Diazo Reagents. Chemistry - A European Journal, 2022, 28, .	3.3	3
8	Photocatalytic <i>E</i> → <i>Z Contra</i> â€Thermodynamic Isomerization of Vinyl Silanes with Lewis Base. Chemistry - A European Journal, 2022, 28, .	3.3	5
9	Electrochemical Synthesis of Iodohydrins. Advanced Synthesis and Catalysis, 2022, 364, 2741-2747.	4.3	8
10	Stereospecific Synthesis of Glycoside Mimics Through Migitaâ€Kosugiâ€Stille Crossâ€Coupling Reactions of Chemically and Configurationally Stable 1―C â€Tributylstannyl Iminosugars. Advanced Synthesis and Catalysis, 2021, 363, 470-483.	4.3	8
11	Synthesis of Fluoroâ€; Monofluoromethylâ€; Difluoromethylâ€; and Trifluoromethyl‣ubstituted Threeâ€Membered Rings. Chemistry - A European Journal, 2021, 27, 2935-2962.	3.3	40
12	Access to Trisubstituted Fluoroalkenes by Ruthenium atalyzed Crossâ€Metathesis. Advanced Synthesis and Catalysis, 2021, 363, 2140-2147.	4.3	13
13	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie - International Edition, 2021, 60, 14498-14503.	13.8	60
14	Copperâ€Photocatalyzed Hydroboration of Alkynes and Alkenes. Angewandte Chemie, 2021, 133, 14619-14624.	2.0	13
15	Electrochemical Hydroboration of Alkynes. Chemistry - A European Journal, 2021, 27, 8277-8282.	3.3	30
16	Transition Metalâ€Free Regioselective Remote Câ^'H Bond 2,2,2â€Trifluoroethoxylation of 8â€Aminoquinoline Derivatives at the C5 Position. European Journal of Organic Chemistry, 2021, 2021, 3407-3410.	2.4	6
17	Asymmetric Synthesis of Fluoro, Fluoromethyl, Difluoromethyl, and Trifluoromethylcyclopropanes. Accounts of Chemical Research, 2021, 54, 2969-2990.	15.6	52
18	Copperâ€Photocatalyzed Hydrosilylation of Alkynes and Alkenes under Continuous Flow. Chemistry - A European Journal, 2021, 27, 11818-11822.	3.3	36

#	Article	IF	CITATIONS
19	Photocatalyzed <i>E</i> → <i>Z</i> Contraâ€thermodynamic Isomerization of Vinyl Boronates with Binaphthol. Chemistry - A European Journal, 2021, 27, 13966-13970.	3.3	21
20	Metal-Catalyzed Metathesis of Fluorinated Alkenes: Still a Current Major Challenge. ACS Catalysis, 2021, 11, 12307-12323.	11.2	7
21	<i>Z</i> -Selective Pd-catalyzed 2,2,2-trifluoroethylation of acrylamides at room temperature. Chemical Communications, 2021, 57, 6241-6244.	4.1	19
22	Continuous flow synthesis of Celecoxib from 2-bromo-3,3,3-trifluoropropene. Journal of Flow Chemistry, 2021, , 1-5.	1.9	6
23	Continuous Flow Synthesis of Propofol. Molecules, 2021, 26, 7183.	3.8	13
24	Practical Synthesis of Ethyl 3-Fluoro-1-pyrrole-2-carboxylate: A Key Fragment of a Potent Drug Candidate against Hepatitis B Virus. Organic Process Research and Development, 2020, 24, 792-801.	2.7	9
25	Nâ€Heterocyclic Carbeneâ€Catalyzed Formal [6+2] Annulation Reaction via Crossâ€Conjugated Azaâ€Trienolate Intermediates. Chemistry - A European Journal, 2020, 26, 818-822.	3.3	21
26	Copper-Photocatalyzed <i>Contra</i> -Thermodynamic Isomerization of Polarized Alkenes. Organic Letters, 2020, 22, 7688-7693.	4.6	28
27	Stereoselective Synthesis of Terminal Monofluoroalkenes from Trifluoromethylated Alkenes. Organic Letters, 2020, 22, 4858-4863.	4.6	30
28	Synthesis of fluorocyclopropanes via the enantioselective cyclopropanation of fluoro-substituted allylic alcohols using zinc carbenoids. Canadian Journal of Chemistry, 2020, 98, 516-523.	1.1	5
29	Recent advances in photocatalyzed reactions using well-defined copper(I) complexes. Beilstein Journal of Organic Chemistry, 2020, 16, 451-481.	2.2	58
30	Copper atalyzed Enantioselective Formation of Câ^'CF ₃ Centers from β F ₃ â€&ubstituted Acrylates and Acrylonitriles. Chemistry - A European Journal, 2019, 25, 15262-15266.	3.3	17
31	Catalytic Asymmetric Synthesis of α,α-Difluoromethylated and α-Fluoromethylated Tertiary Alcohols. Organic Letters, 2019, 21, 7509-7513.	4.6	11
32	Rhodium catalysed enantioselective synthesis of mono-(halo)-methyl-cyclopropanes. Organic and Biomolecular Chemistry, 2019, 17, 472-476.	2.8	13
33	Recent Advances for the Direct Introduction of the CF2Me Moiety. Frontiers in Chemistry, 2019, 7, 111.	3.6	19
34	BiCl ₃ -Mediated direct functionalization of unsaturated C–C bonds with an electrophilic SCF ₂ PO(OEt) ₂ reagent. Chemical Communications, 2019, 55, 8784-8787.	4.1	18
35	Catalytic Enantioselective Cyclopropanation of α-Fluoroacrylates: An Experimental and Theoretical Study. ACS Catalysis, 2019, 9, 2594-2598.	11.2	29
36	Copperâ€Photocatalyzed Borylation of Organic Halides under Batch and Continuousâ€Flow Conditions. Chemistry - A European Journal, 2019, 25, 3262-3266.	3.3	50

#	Article	IF	CITATIONS
37	An electrophilic reagent for the synthesis of OCHFMe-containing molecules. Chemical Communications, 2018, 54, 2491-2493.	4.1	15
38	Synthesis of 4-Difluoromethylquinolines by NHC-Catalyzed Umpolung of Imines. Organic Letters, 2018, 20, 1086-1089.	4.6	53
39	1-C-phosphonomethyl- and 1-C-difluorophosphonomethyl-1,4-imino-l-arabinitols as Galf transferase inhibitors: A comparison. Carbohydrate Research, 2018, 461, 45-50.	2.3	12
40	Palladium-Catalyzed Synthesis of Aryl and Heteroaryl Difluoromethylated Phosphonates. Synthesis, 2018, 50, 778-784.	2.3	15
41	Pdâ€Catalyzed Trifluoromethylthiolation of Unsaturated Compounds: A General Approach. European Journal of Organic Chemistry, 2018, 2018, 6167-6175.	2.4	24
42	Enantioselective N-Heterocyclic Carbene-Catalyzed Cascade Reaction for the Synthesis of Pyrroloquinolines via N–H Functionalization of Indoles. Organic Letters, 2018, 20, 6998-7002.	4.6	57
43	General Catalytic Enantioselective Access to Monohalomethyl and Trifluoromethyl Cyclopropanes. Chemistry - A European Journal, 2018, 24, 10339-10343.	3.3	41
44	Trifluoromethylthiolation of αâ€Chloroaldehydes: Access to Quaternary SCF ₃ â€Containing Centers. European Journal of Organic Chemistry, 2018, 2018, 3693-3696.	2.4	26
45	Palladium-catalyzed synthesis of 3-trifluoromethylated 1,3-dienes from acrylate derivatives and BTP. Tetrahedron, 2018, 74, 6033-6040.	1.9	9
46	N-Heterocyclic Carbene-Catalyzed Synthesis of α-Trifluoromethyl Esters. Organic Letters, 2018, 20, 3897-3901.	4.6	21
47	Tunable Approach for the Stereoselective Synthesis of 1-C-Diethylphosphono(difluoromethyl) Iminosugars as Glycosyl Phosphate Mimics. Journal of Organic Chemistry, 2017, 82, 2753-2763.	3.2	26
48	Copperâ€Mediated [(Diethylphosphono)difluoromethyl]thiolation of αâ€Bromo Ketones. European Journal of Organic Chemistry, 2017, 2017, 2475-2480.	2.4	19
49	¹⁸ F-Fluoroform: a ¹⁸ F-trifluoromethylating agent for the synthesis of SCF ₂ ¹⁸ F-aromatic derivatives. Chemical Communications, 2017, 53, 5706-5709.	4.1	43
50	Palladium-Catalyzed Synthesis of 3-Trifluoromethyl-Substituted 1,3-Butadienes by Means of Directed C–H Bond Functionalization. Organic Letters, 2017, 19, 2106-2109.	4.6	45
51	Stereoselective access to trisubstituted fluorinated alkenyl thioethers. Catalysis Science and Technology, 2017, 7, 1921-1927.	4.1	12
52	Copperâ€Mediated Introduction of the CF ₂ PO(OEt) ₂ Motif: Scope and Limitations. Chemistry - A European Journal, 2017, 23, 17318-17338.	3.3	43
53	The Transient Directing Group Strategy: A New Trend in Transition-Metal-Catalyzed C–H Bond Functionalization. Synthesis, 2017, 49, 4808-4826.	2.3	97
54	Catalytic Enantioselective Synthesis of Highly Functionalized Difluoromethylated Cyclopropanes. Angewandte Chemie - International Edition, 2017, 56, 13319-13323.	13.8	58

#	Article	IF	CITATIONS
55	Pd-Catalyzed Diastereoselective Trifluoromethylthiolation of Functionalized Acrylamides. Organic Letters, 2017, 19, 5106-5109.	4.6	47
56	Catalytic Enantioselective Synthesis of Highly Functionalized Difluoromethylated Cyclopropanes. Angewandte Chemie, 2017, 129, 13504-13508.	2.0	18
57	Recent Progress Toward the Synthesis of Trifluoromethyl―and Difluoromethylâ€5ubstituted Cyclopropanes. Chemistry - A European Journal, 2017, 23, 4950-4961.	3.3	99
58	New Prospects toward the Synthesis of Difluoromethylated Phosphate Mimics. Chemistry - A European Journal, 2016, 22, 10284-10293.	3.3	57
59	Copper Salt ontrolled Divergent Reactivity of [Cu]CF ₂ PO(OEt) ₂ with αâ€Điazocarbonyl Derivatives. Angewandte Chemie, 2016, 128, 14347-14351.	2.0	19
60	Copper Saltâ€Controlled Divergent Reactivity of [Cu]CF ₂ PO(OEt) ₂ with αâ€Điazocarbonyl Derivatives. Angewandte Chemie - International Edition, 2016, 55, 14141-14145.	13.8	46
61	Palladium atalysed Synthesis of αâ€(Trifluoromethyl)styrenes by Means of Directed C–H Bond Functionalization. European Journal of Organic Chemistry, 2016, 2016, 76-82.	2.4	22
62	Synthesis and Applications of Fluorocyclopropanes. Synthesis, 2016, 48, 4060-4071.	2.3	43
63	Introduction of Functionalized Difluoromethylated Building Blocks Mediated or Catalyzed by Copper. Synlett, 2016, 27, 2314-2326.	1.8	11
64	Catalytic Enantioselective Synthesis of Halocyclopropanes. Chemistry - A European Journal, 2016, 22, 6239-6242.	3.3	25
65	New entries toward the synthesis of OCF ₃ -containing molecules. Organic Chemistry Frontiers, 2016, 3, 1004-1010.	4.5	152
66	Synthesis and Reactivity of <i>N</i> â€ <i>tert</i> â€Butanesulfinyl Glycosylamines. European Journal of Organic Chemistry, 2015, 2015, 4330-4334.	2.4	17
67	Recent Progress toward the Introduction of Functionalized Difluoromethylated Building Blocks onto C(sp ²) and C(sp) Centers. Chemistry - A European Journal, 2015, 21, 12836-12865.	3.3	302
68	Copperâ€Mediated Synthesis of Aryldifluoromethylphosphonates: A Sandmeyer Approach. European Journal of Organic Chemistry, 2015, 2015, 3787-3792.	2.4	30
69	Copperâ€Mediated Formation of Aryl, Heteroaryl, Vinyl and Alkynyl Difluoromethylphosphonates: A General Approach to Fluorinated Phosphate Mimics. Angewandte Chemie - International Edition, 2015, 54, 13406-13410.	13.8	83
70	Copper atalyzed Innate EthoxycarbonÂyldifluoromethylation of Electronâ€Rich ÂArenes. European Journal of Organic Chemistry, 2015, 2015, 1719-1726.	2.4	43
71	Direct Vicinal Difunctionalization of Alkynes: An Efficient Approach Towards the Synthesis of Highly Functionalized Fluorinated Alkenes. European Journal of Organic Chemistry, 2015, 2015, 2765-2789.	2.4	116
72	1,4-Addition of the CF3 group, perfluoroalkyl groups and functionalized difluoromethylated moieties: An overview. Journal of Fluorine Chemistry, 2015, 178, 225-240.	1.7	10

#	Article	IF	CITATIONS
73	Rhodium-Catalyzed Cyclopropanation of Fluorinated Olefins: A Straightforward Route to Highly Functionalized Fluorocyclopropanes. Organic Letters, 2015, 17, 1790-1793.	4.6	34
74	Synthesis and immunological evaluation of fluorinated α-C-galactosylceramide analogs. Journal of Fluorine Chemistry, 2015, 173, 84-91.	1.7	5
75	First synthesis of diethyl N-acetyl-glycosamine-1-difluoromethylphosphonate from 2-nitroglycals as phosphate analog. Journal of Fluorine Chemistry, 2015, 171, 56-59.	1.7	15
76	Copper-Mediated Direct Functionalization of Unsaturated C–C Bonds with Ethyl Bromo(difluoro)acetate: A Straightforward Access to Highly Valuable Difluoromethylated Alkenes. Synthesis, 2014, 46, 1859-1870.	2.3	54
77	Evaluation of the PAH and water-extractable phenols content in used cross ties from the French rail network. Chemosphere, 2014, 111, 1-6.	8.2	10
78	Efficient access to fluorinated homoallylic alcohols through an indium promoted fluoroallylation reaction. Tetrahedron, 2014, 70, 3123-3133.	1.9	9
79	Stereoselective Access to βâ€∢i>Câ€Glycosamines by Nitroâ€Michael Addition of Organolithium Reagents. European Journal of Organic Chemistry, 2014, 2014, 3341-3345.	2.4	13
80	Indium-Promoted Diastereoselective Addition of Fluorinated Haloallylic Derivatives to Imines. Journal of Organic Chemistry, 2014, 79, 2916-2925.	3.2	17
81	Recent Progress in Direct Introduction of Fluorinated Groups on Alkenes and Alkynes by means of CH Bond Functionalization. Chemistry - A European Journal, 2014, 20, 16830-16845.	3.3	229
82	Copper-Catalyzed Direct C-2 Difluoromethylation of Furans and Benzofurans: Access to C-2 CF ₂ H Derivatives. Journal of Organic Chemistry, 2014, 79, 7205-7211.	3.2	89
83	Access to Difluoromethylated Alkynes through the Castro–Stephens Reaction. European Journal of Organic Chemistry, 2014, 2014, 7220-7225.	2.4	17
84	2â€Nitroglycals: Versatile Building Blocks for the Synthesis of 2â€Aminoglycosides. European Journal of Organic Chemistry, 2014, 2014, 7525-7546.	2.4	25
85	Copper-catalyzed olefinic C–H difluoroacetylation of enamides. Chemical Communications, 2014, 50, 5887-5890.	4.1	90
86	Stereoselectivity of the Honda–Reformatsky Reaction in Reactions with Ethyl Bromodifluoroacetate with α-Oxygenated Sulfinylimines. Journal of Organic Chemistry, 2014, 79, 4186-4195.	3.2	28
87	Copper-Catalyzed Direct Arylation of Cyclic Enamides Using Diaryliodonium Salts. Organic Letters, 2013, 15, 278-281.	4.6	92
88	A practical and straightforward access to fluorinated homoallylic alcohols in aqueous media. Tetrahedron Letters, 2013, 54, 2821-2824.	1.4	9
89	Diethylzincâ€Mediated Addition of 2,2â€Dibromoâ€2â€fluoroacetamides to Carbonyl Compounds: Synthesis of αâ€Bromoâ€Î±â€fluoroâ€Î²â€hydroxy Amides and/or (<i>Z</i>)â€Fluorovinyl Amides. European Journal of Organi Chemistry, 2013, 2013, 3278-3289.	c2.4	13
90	Copper Catalyzed β-Difluoroacetylation of Dihydropyrans and Glycals by Means of Direct C–H Functionalization. Organic Letters, 2013, 15, 3428-3431.	4.6	121

#	Article	IF	CITATIONS
91	Addition of Electrophilic Radicals to 2â€Benzyloxyglycals: Synthesis and Functionalization of Fluorinated αâ€ <i>C</i> â€Glycosides and Derivatives. Chemistry - A European Journal, 2013, 19, 12778-12787.	3.3	29
92	Indium-Promoted Reformatsky Reaction: A Straightforward Access to β-Amino and β-Hydroxy α,α-Difluoro Carbonyl Compounds. Journal of Organic Chemistry, 2012, 77, 9277-9285.	3.2	50
93	Efficient C-3 functionalization of 4-dimethylaminopyridine (DMAP). A straightforward access to new chiral nucleophilic catalysts. Tetrahedron Letters, 2012, 53, 3284-3287.	1.4	14
94	Potassium tert-butoxide mediated Heck-type cyclization/isomerization–benzofurans from organocatalytic radical cross-coupling reactions. Chemical Communications, 2011, 47, 10629.	4.1	123
95	Visible light mediated azomethine ylide formation—photoredox catalyzed [3+2] cycloadditions. Chemical Communications, 2011, 47, 9615.	4.1	189
96	Organocatalyzed Enantioselective Protonation. , 2011, , 67-106.		9
97	Catalytic Asymmetric Protonation of Chiral Calcium Enolates via 1,4-Addition of Malonates. Journal of the American Chemical Society, 2010, 132, 7890-7892.	13.7	79
98	Organocatalyzed Enantioselective Protonation of Silyl Enol Ethers: Scope, Limitations, and Application to the Preparation of Enantioenriched Homoisoflavones. Journal of Organic Chemistry, 2010, 75, 7704-7716.	3.2	51
99	Asymmetric Mannich Reaction of Malonates with Imines Catalyzed by a Chiral Calcium Complex. Journal of Organic Chemistry, 2010, 75, 963-965.	3.2	57
100	Preparation of β-Lactams by Mannich-Type Addition of Ethyl(trimethylÂsilyl)acetate (ETSA) to N-(2-Hydroxyphenyl)aldimine Sodium Salts. Synlett, 2009, 2009, 2437-2440.	1.8	3
101	Product-Catalyzed Addition of Alkyl Nitriles to Unactivated Imines Promoted by Sodium Aryloxide/Ethyl(trimethylsilyl)acetate (ETSA) Combination. Journal of Organic Chemistry, 2009, 74, 3516-3519.	3.2	28
102	MacMillan's Imidazolidinones: Powerful Chiral Organocatalysts. Synlett, 2008, 2008, 147-148.	1.8	13
103	Straightforward Organocatalytic Enantioselective Protonation of Silyl Enolates by Means of Cinchona Alkaloids and Carboxylic Acids. Synlett, 2008, 2008, 2447-2450.	1.8	7
104	DMAP-Organocatalyzed O-Silyl-O-(or C-)-Benzoyl Interconversions by Means of Benzoyl Fluoride. Synlett, 2007, 2007, 0381-0386.	1.8	8
105	Organocatalytic Enantioselective Protonation of Silyl Enolates Mediated by Cinchona Alkaloids and a Latent Source of HF. Angewandte Chemie - International Edition, 2007, 46, 7090-7093.	13.8	80
106	Single-Step Preparation of a 4-(Dimethylamino)pyridine Analogue Bearing a Sulfoxide as New Chiral Inducer. Preliminary Evaluation as Nucleophilic Catalyst. Synlett, 2005, 2005, 2285-2288.	1.8	0