
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2635482/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | BedMachine v3: Complete Bed Topography and Ocean Bathymetry Mapping of Greenland From<br>Multibeam Echo Sounding Combined With Mass Conservation. Geophysical Research Letters, 2017, 44,<br>11051-11061. | 1.5 | 536       |
| 2  | Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nature Geoscience, 2010, 3, 408-411.                                                                            | 5.4 | 325       |
| 3  | Modelling the response of glaciers to climate warming. Climate Dynamics, 1998, 14, 267-274.                                                                                                               | 1.7 | 310       |
| 4  | The northern sector of the last British Ice Sheet: Maximum extent and demise. Earth-Science Reviews, 2008, 88, 207-226.                                                                                   | 4.0 | 276       |
| 5  | Deglaciation of the Eurasian ice sheet complex. Quaternary Science Reviews, 2017, 169, 148-172.                                                                                                           | 1.4 | 253       |
| 6  | Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP–HOM). Cryosphere,<br>2008, 2, 95-108.                                                                                      | 1.5 | 221       |
| 7  | Evolution of the subglacial drainage system beneath the Greenland Ice Sheet revealed by tracers.<br>Nature Geoscience, 2013, 6, 195-198.                                                                  | 5.4 | 219       |
| 8  | UAV photogrammetry and structure from motion to assess calving dynamics at Store Glacier, a large outlet draining the Greenland ice sheet. Cryosphere, 2015, 9, 1-11.                                     | 1.5 | 215       |
| 9  | Dynamic cycles, ice streams and their impact on the extent, chronology and deglaciation of the<br>British–Irish ice sheet. Quaternary Science Reviews, 2009, 28, 758-776.                                 | 1.4 | 214       |
| 10 | Greenland ice sheet motion coupled with daily melting in late summer. Geophysical Research Letters, 2009, 36, .                                                                                           | 1.5 | 181       |
| 11 | Massive blow-out craters formed by hydrate-controlled methane expulsion from the Arctic seafloor.<br>Science, 2017, 356, 948-953.                                                                         | 6.0 | 177       |
| 12 | POLYTHERMAL GLACIER HYDROLOGY: A REVIEW. Reviews of Geophysics, 2011, 49, .                                                                                                                               | 9.0 | 149       |
| 13 | Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: Constraints on past ice volume change. Geology, 2010, 38, 411-414.                                                        | 2.0 | 138       |
| 14 | The build-up, configuration, and dynamical sensitivity of the Eurasian ice-sheet complex to Late<br>Weichselian climatic and oceanic forcing. Quaternary Science Reviews, 2016, 153, 97-121.              | 1.4 | 138       |
| 15 | Amplified melt and flow of the Greenland ice sheet driven by late-summer cyclonic rainfall. Nature<br>Geoscience, 2015, 8, 647-653.                                                                       | 5.4 | 107       |
| 16 | Ice-sheet-driven methane storage and release in the Arctic. Nature Communications, 2016, 7, 10314.                                                                                                        | 5.8 | 105       |
| 17 | Self-regulation of ice flow varies across the ablation area in south-west Greenland. Cryosphere, 2015, 9, 603-611.                                                                                        | 1.5 | 101       |
| 18 | Algae Drive Enhanced Darkening of Bare Ice on the Greenland Ice Sheet. Geophysical Research Letters, 2017, 44, 11,463.                                                                                    | 1.5 | 101       |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A modelling insight into the Icelandic Last Glacial Maximum ice sheet. Quaternary Science Reviews,<br>2006, 25, 2283-2296.                                                                                                            | 1.4 | 97        |
| 20 | lce tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice<br>Sheet. Cryosphere, 2013, 7, 129-140.                                                                                        | 1.5 | 97        |
| 21 | Gas hydrate dissociation off Svalbard induced by isostatic rebound rather than global warming.<br>Nature Communications, 2018, 9, 83.                                                                                                 | 5.8 | 97        |
| 22 | Comparison of a three-dimensional model for glacier flow with field data from Haut Glacier d'Arolla,<br>Switzerland. Journal of Glaciology, 1998, 44, 368-378.                                                                        | 1.1 | 96        |
| 23 | Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during<br>the record-warm year 2010 explained by detailed energy balance observations. Cryosphere, 2012, 6,<br>199-209.                    | 1.5 | 96        |
| 24 | A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland.<br>Cryosphere, 2014, 8, 107-121.                                                                                                   | 1.5 | 93        |
| 25 | Greenland Ice Sheet surface melt amplified by snowline migration and bare ice exposure. Science Advances, 2019, 5, eaav3738.                                                                                                          | 4.7 | 93        |
| 26 | Postglacial response of Arctic Ocean gas hydrates to climatic amelioration. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6215-6220.                                                    | 3.3 | 92        |
| 27 | Hydrological controls on patterns of surface, internal and basal motion during three "spring<br>events†Haut Glacier d'Arolla, Switzerland. Journal of Glaciology, 2003, 49, 555-567.                                                  | 1.1 | 91        |
| 28 | High-resolution numerical simulation of Younger Dryas glaciation in Scotland. Quaternary Science<br>Reviews, 2008, 27, 888-904.                                                                                                       | 1.4 | 88        |
| 29 | lce–ocean interaction and calving front morphology at two west Greenland tidewater outlet<br>glaciers. Cryosphere, 2014, 8, 1457-1468.                                                                                                | 1.5 | 88        |
| 30 | Dark zone of the Greenland Ice Sheet controlled by distributed biologically-active impurities. Nature Communications, 2018, 9, 1065.                                                                                                  | 5.8 | 88        |
| 31 | The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. Journal of Glaciology, 2012, 58, 229-239.                                          | 1.1 | 87        |
| 32 | Persistent flow acceleration within the interior of the Greenland ice sheet. Geophysical Research<br>Letters, 2014, 41, 899-905.                                                                                                      | 1.5 | 81        |
| 33 | A modelling reconstruction of the last glacial maximum ice sheet and its deglaciation in the vicinity<br>of the northern patagonian icefield, south america. Geografiska Annaler, Series A: Physical Geography,<br>2005, 87, 375-391. | 0.6 | 78        |
| 34 | Glacier algae accelerate melt rates on the south-western Greenland Ice Sheet. Cryosphere, 2020, 14,<br>309-330.                                                                                                                       | 1.5 | 78        |
| 35 | Can glacial erosion limit the extent of glaciation?. Geomorphology, 2009, 103, 172-179.                                                                                                                                               | 1.1 | 70        |
| 36 | High-Resolution Modeling of the Advance of the Younger Dryas Ice Sheet and Its Climate in Scotland.<br>Quaternary Research, 1999, 52, 27-43.                                                                                          | 1.0 | 69        |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Palaeoglaciology of Bayan Har Shan, NE Tibetan Plateau: exposure ages reveal a missing LGM expansion.<br>Quaternary Science Reviews, 2011, 30, 1988-2001.                                                            | 1.4 | 68        |
| 38 | Geophysical constraints on the dynamics and retreat of the Barents Sea ice sheet as a paleobenchmark for models of marine ice sheet deglaciation. Reviews of Geophysics, 2015, 53, 1051-1098.                        | 9.0 | 68        |
| 39 | Sensitive response of the Greenland Ice Sheet to surface melt drainage over a soft bed. Nature Communications, 2014, 5, 5052.                                                                                        | 5.8 | 67        |
| 40 | Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophysical Research<br>Letters, 2015, 42, 7606-7614.                                                                                | 1.5 | 66        |
| 41 | Direct measurements of meltwater runoff on the Greenland ice sheet surface. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10622-E10631.                               | 3.3 | 66        |
| 42 | Structure and changing dynamics of a polythermal valley glacier on a centennial timescale: Midre<br>Lovénbreen, Svalbard. Journal of Geophysical Research, 2005, 110, .                                              | 3.3 | 64        |
| 43 | Evaluation of a numerical model of the British–Irish ice sheet using relative seaâ€level data:<br>implications for the interpretation of trimline observations. Journal of Quaternary Science, 2012, 27,<br>597-605. | 1.1 | 60        |
| 44 | Modeling of subglacial hydrological development following rapid supraglacial lake drainage. Journal<br>of Geophysical Research F: Earth Surface, 2015, 120, 1127-1147.                                               | 1.0 | 60        |
| 45 | Glacial isostatic adjustment associated with the Barents Sea ice sheet: A modelling inter-comparison.<br>Quaternary Science Reviews, 2016, 147, 122-135.                                                             | 1.4 | 58        |
| 46 | A Fullâ€Stokes 3â€D Calving Model Applied to a Large Greenlandic Glacier. Journal of Geophysical Research<br>F: Earth Surface, 2018, 123, 410-432.                                                                   | 1.0 | 54        |
| 47 | Recent glacier changes and climate trends on South Georgia. Global and Planetary Change, 2008, 60, 72-84.                                                                                                            | 1.6 | 53        |
| 48 | Seismic evidence of mechanically weak sediments underlying Russell Glacier, West Greenland. Annals of Glaciology, 2013, 54, 135-141.                                                                                 | 2.8 | 52        |
| 49 | Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland. Cryosphere, 2012, 6, 909-922.            | 1.5 | 48        |
| 50 | Cascading lake drainage on the Greenland Ice Sheet triggered by tensile shock and fracture. Nature<br>Communications, 2018, 9, 1064.                                                                                 | 5.8 | 47        |
| 51 | Ice flow dynamics and surface meltwater flux at a land-terminating sector of the Greenland ice sheet.<br>Journal of Glaciology, 2013, 59, 687-696.                                                                   | 1.1 | 46        |
| 52 | The configuration, sensitivity and rapid retreat of the Late Weichselian Icelandic ice sheet.<br>Earth-Science Reviews, 2017, 166, 223-245.                                                                          | 4.0 | 46        |
| 53 | Holocene climatic changes in Iceland: evidence from modelling glacier length fluctuations at<br>Sólheimajökull. Quaternary International, 2002, 91, 39-52.                                                           | 0.7 | 45        |
| 54 | Hydrological controls on diurnal ice flow variability in valley glaciers. Journal of Geophysical<br>Research, 2005, 110, n/a-n/a.                                                                                    | 3.3 | 45        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | How robust are in situ observations for validating satelliteâ€derived albedo over the dark zone of the<br>Greenland Ice Sheet?. Geophysical Research Letters, 2017, 44, 6218-6225.                     | 1.5 | 43        |
| 56 | Evidence for subglacial ponding across Taylor Glacier, Dry Valleys, Antarctica. Annals of Glaciology,<br>2004, 39, 79-84.                                                                              | 2.8 | 42        |
| 57 | High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice<br>Sheet. Earth System Science Data, 2014, 6, 331-338.                                             | 3.7 | 42        |
| 58 | Physical Conditions of Fast Glacier Flow: 1. Measurements From Boreholes Drilled to the Bed of Store<br>Glacier, West Greenland. Journal of Geophysical Research F: Earth Surface, 2018, 123, 324-348. | 1.0 | 41        |
| 59 | Glacier mass-balance determination by remote sensing and high-resolution modelling. Journal of Glaciology, 2000, 46, 491-498.                                                                          | 1.1 | 40        |
| 60 | Upper bounds on subglacial channel development for interior regions of the Greenland ice sheet.<br>Journal of Glaciology, 2014, 60, 1044-1052.                                                         | 1.1 | 40        |
| 61 | The validation and sensitivity of a model of the Icelandic ice sheet. Quaternary Science Reviews, 2006, 25, 2297-2313.                                                                                 | 1.4 | 39        |
| 62 | Seismic evidence for complex sedimentary control of Greenland Ice Sheet flow. Science Advances, 2017, 3, e1603071.                                                                                     | 4.7 | 39        |
| 63 | Arctic sea-ice loss fuels extreme European snowfall. Nature Geoscience, 2021, 14, 283-288.                                                                                                             | 5.4 | 39        |
| 64 | Regulation of ice stream flow through subglacial formation of gas hydrates. Nature Geoscience, 2016,<br>9, 370-374.                                                                                    | 5.4 | 38        |
| 65 | Extraordinary runoff from the Greenland ice sheet in 2012 amplified by hypsometry and depleted firn retention. Cryosphere, 2016, 10, 1147-1159.                                                        | 1.5 | 37        |
| 66 | Derivation of High Spatial Resolution Albedo from UAV Digital Imagery: Application over the<br>Greenland Ice Sheet. Frontiers in Earth Science, 2017, 5, .                                             | 0.8 | 37        |
| 67 | Changing surface–atmosphere energy exchange and refreezing capacity of the lower accumulation area, West Greenland. Cryosphere, 2015, 9, 2163-2181.                                                    | 1.5 | 36        |
| 68 | Surface Meltwater Impounded by Seasonal Englacial Storage in West Greenland. Geophysical Research<br>Letters, 2018, 45, 10,474.                                                                        | 1.5 | 36        |
| 69 | A Monte Carlo error analysis for basal sliding velocity calculations. Journal of Geophysical Research, 2006, 111, .                                                                                    | 3.3 | 35        |
| 70 | Seasonal velocities of eight major marine-terminating outlet glaciers of the Greenland ice sheet from continuous in situ GPS instruments. Earth System Science Data, 2013, 5, 277-287.                 | 3.7 | 35        |
| 71 | Holocene atmospheric circulation in the central North Pacific: A new terrestrial diatom and δ180<br>dataset from the Aleutian Islands. Quaternary Science Reviews, 2018, 194, 27-38.                   | 1.4 | 35        |
| 72 | Reconstructing the Last Glacial Maximum ice sheet in the Weddell Sea embayment, Antarctica, using numerical modelling constrained by field evidence. Quaternary Science Reviews, 2011, 30, 2422-2432.  | 1.4 | 34        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The 2015 Chileno Valley glacial lake outburst flood, Patagonia. Geomorphology, 2019, 332, 51-65.                                                                                                                                                            | 1.1 | 34        |
| 74 | MODELLING CLIMATE, TOPOGRAPHY AND PALAEOGLACIER FLUCTUATIONS IN THE CHILEAN ANDES. Earth Surface Processes and Landforms, 1997, 22, 79-92.                                                                                                                  | 1.2 | 33        |
| 75 | Bedrock surface roughness and the distribution of subglacially precipitated carbonate deposits:<br>implications for formation at Glacier de Tsanfleuron, Switzerland. Earth Surface Processes and<br>Landforms, 1998, 23, 261-270.                          | 1.2 | 32        |
| 76 | Evaluating Younger Dryas glacier reconstructions in part of the western Scottish Highlands: a combined empirical and theoretical approach. Boreas, 2005, 34, 274-286.                                                                                       | 1.2 | 32        |
| 77 | An investigation into the mechanisms controlling seasonal speedup events at a High Arctic glacier.<br>Journal of Geophysical Research, 2008, 113, .                                                                                                         | 3.3 | 32        |
| 78 | A revised Little Ice Age chronology of the Franz Josef Glacier, Westland, New Zealand. Journal of the<br>Royal Society of New Zealand, 2004, 34, 381-394.                                                                                                   | 1.0 | 31        |
| 79 | Towards a GIS assessment of numerical ice-sheet model performance using geomorphological data.<br>Journal of Glaciology, 2007, 53, 71-83.                                                                                                                   | 1.1 | 30        |
| 80 | Supraglacial Ponds Regulate Runoff From Himalayan Debrisâ€Covered Glaciers. Geophysical Research<br>Letters, 2017, 44, 11,894.                                                                                                                              | 1.5 | 30        |
| 81 | Evidence of Isotopic Fractionation During Vapor Exchange Between the Atmosphere and the Snow Surface in Greenland. Journal of Geophysical Research D: Atmospheres, 2019, 124, 2932-2945.                                                                    | 1.2 | 30        |
| 82 | A wireless subglacial probe for deep ice applications. Journal of Glaciology, 2012, 58, 841-848.                                                                                                                                                            | 1.1 | 29        |
| 83 | Ice-Dammed Lake Drainage Evolution at Russell Glacier, West Greenland. Frontiers in Earth Science, 2017, 5, .                                                                                                                                               | 0.8 | 29        |
| 84 | The verification and significance of three approaches to longitudinal stresses in high–resolution models of glacier flow. Geografiska Annaler, Series A: Physical Geography, 2000, 82, 471-487.                                                             | 0.6 | 28        |
| 85 | Spatial variability in the water content and rheology of temperate glaciers: Glacier de Tsanfleuron,<br>Switzerland. Annals of Glaciology, 2003, 37, 1-6.                                                                                                   | 2.8 | 28        |
| 86 | Seasonal variations in ice deformation and basal motion across the tongue of Haut Glacier d'Arolla,<br>Switzerland. Annals of Glaciology, 2003, 36, 157-167.                                                                                                | 2.8 | 27        |
| 87 | Influence of seasonality on glacier mass balance, and implications for palaeoclimate reconstructions.<br>Climate Dynamics, 2010, 35, 757-770.                                                                                                               | 1.7 | 27        |
| 88 | Biocryomorphology: Integrating Microbial Processes with Ice Surface Hydrology, Topography, and Roughness. Frontiers in Earth Science, 0, 3, .                                                                                                               | 0.8 | 27        |
| 89 | Physical Conditions of Fast Glacier Flow: 2. Variable Extent of Anisotropic Ice and Soft Basal Sediment<br>From Seismic Reflection Data Acquired on Store Glacier, West Greenland. Journal of Geophysical<br>Research F: Earth Surface, 2018, 123, 349-362. | 1.0 | 26        |
| 90 | Resolving the internal and basal geometry of ice masses using imaging phase-sensitive radar. Journal of Glaciology, 2018, 64, 649-660.                                                                                                                      | 1.1 | 26        |

| #   | Article                                                                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Subglacial topography inferred from ice surface terrain analysis reveals a large unâ€surveyed basin<br>below sea level in East Antarctica. Geophysical Research Letters, 2008, 35, .                   | 1.5 | 24        |
| 92  | Subglacial water storage and drainage beneath the Fennoscandian and Barents Sea ice sheets.<br>Quaternary Science Reviews, 2018, 201, 13-28.                                                           | 1.4 | 23        |
| 93  | An automated approach to the location of icequakes using seismic waveform amplitudes. Annals of Glaciology, 2013, 54, 1-9.                                                                             | 2.8 | 22        |
| 94  | Former extent of glacier-like forms on Mars. Icarus, 2016, 274, 37-49.                                                                                                                                 | 1.1 | 21        |
| 95  | Superimposed ice regime of a high Arctic glacier inferred using ground-penetrating radar, flow modeling, and ice cores. Journal of Geophysical Research, 2006, 111, .                                  | 3.3 | 20        |
| 96  | Mass balance, flow and subglacial processes of a modelled Younger Dryas ice cap in Scotland. Journal of Glaciology, 2009, 55, 32-42.                                                                   | 1.1 | 20        |
| 97  | Ice thickness and basal conditions of vestfonna ice cap, eastern svalbard. Geografiska Annaler, Series<br>A: Physical Geography, 2011, 93, 311-322.                                                    | 0.6 | 20        |
| 98  | Automated monitoring of subglacial hydrological processes with groundâ€penetrating radar (GPR) at<br>high temporal resolution: scope and potential pitfalls. Geophysical Research Letters, 2008, 35, . | 1.5 | 19        |
| 99  | The last <scp>W</scp> elsh <scp>I</scp> ce <scp>C</scp> ap: Part 1 – Modelling its evolution, sensitivity and associated climate. Boreas, 2013, 42, 471-490.                                           | 1.2 | 19        |
| 100 | Identifying patterns of correspondence between modeled flow directions and field evidence: An automated flow direction analysis. Computers and Geosciences, 2007, 33, 141-150.                         | 2.0 | 17        |
| 101 | The last <scp>W</scp> elsh <scp>I</scp> ce <scp>C</scp> ap: Part 2 – Dynamics of a topographically controlled icecap. Boreas, 2013, 42, 491-510.                                                       | 1.2 | 17        |
| 102 | Illuminating the dynamic rare biosphere of the Greenland Ice Sheet's Dark Zone. FEMS Microbiology<br>Ecology, 2019, 95, .                                                                              | 1.3 | 17        |
| 103 | Storage and export of microbial biomass across the western Greenland Ice Sheet. Nature Communications, 2021, 12, 3960.                                                                                 | 5.8 | 17        |
| 104 | Microseismicity Linked to Gas Migration and Leakage on the Western Svalbard Shelf. Geochemistry,<br>Geophysics, Geosystems, 2017, 18, 4623-4645.                                                       | 1.0 | 16        |
| 105 | Area and volume of mid-latitude glacier-like forms on Mars. Earth and Planetary Science Letters, 2019, 507, 10-20.                                                                                     | 1.8 | 16        |
| 106 | Icelandic permafrost dynamics since the Last Glacial Maximum – model results and geomorphological implications. Quaternary Science Reviews, 2020, 233, 106236.                                         | 1.4 | 16        |
| 107 | Structural glaciology of Isunguata Sermia, West Greenland. Journal of Maps, 2018, 14, 517-527.                                                                                                         | 1.0 | 15        |
| 108 | Elevation Changes of the Fennoscandian Ice Sheet Interior During the Last Deglaciation. Geophysical<br>Research Letters, 2020, 47, e2020GL088796.                                                      | 1.5 | 15        |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | The Geomorphological Evolution of a Dynamic Landscape: the Cairngorm Mountains, Scotland.<br>Botanical Journal of Scotland, 1996, 48, 13-30.                                                                        | 0.3 | 13        |
| 110 | Rapid marine deglaciation: asynchronous retreat dynamics between the Irish Sea Ice Stream and terrestrial outlet glaciers. Earth Surface Dynamics, 2013, 1, 53-65.                                                  | 1.0 | 13        |
| 111 | Physical Conditions of Fast Glacier Flow: 3. Seasonallyâ€Evolving Ice Deformation on Store Glacier,<br>West Greenland. Journal of Geophysical Research F: Earth Surface, 2019, 124, 245-267.                        | 1.0 | 13        |
| 112 | Attribution of Greenland's ablating ice surfaces on ice sheet albedo using unmanned aerial systems.<br>The Cryosphere Discussions TCD, 0, , 1-23.                                                                   | 0.0 | 13        |
| 113 | Modification of bedrock surfaces by glacial abrasion and quarrying: Evidence from North Wales.<br>Geomorphology, 2020, 365, 107283.                                                                                 | 1.1 | 11        |
| 114 | Rapid development and persistence of efficient subglacial drainage under 900 m-thick ice in Greenland.<br>Earth and Planetary Science Letters, 2021, 566, 116982.                                                   | 1.8 | 11        |
| 115 | Automated mapping of glacial overdeepenings beneath contemporary ice sheets: Approaches and potential applications. Geomorphology, 2015, 232, 209-223.                                                              | 1.1 | 10        |
| 116 | The role of ocean and atmospheric dynamics in the marine-based collapse of the last Eurasian Ice<br>Sheet. Communications Earth & Environment, 2022, 3, .                                                           | 2.6 | 9         |
| 117 | The potential contribution of high-resolution glacier flow modelling to structural glaciology.<br>Geological Society Special Publication, 2000, 176, 135-146.                                                       | 0.8 | 8         |
| 118 | Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment: Constraints on past<br>ice volume change: REPLY. Geology, 2011, 39, e240-e240.                                                      | 2.0 | 8         |
| 119 | Optimising ice flow law parameters using borehole deformation measurements and numerical modelling. Geophysical Research Letters, 2008, 35, .                                                                       | 1.5 | 7         |
| 120 | A hardware proof of concept for a remote-controlled glacier-surveying boat. Journal of Field<br>Robotics, 2012, 29, 880-890.                                                                                        | 3.2 | 7         |
| 121 | The reconstruction and climatic implication of an independent palaeo ice cap within the Andean rain shadow east of the former Patagonian ice sheet, Santa Cruz Province, Argentina. Geomorphology, 2013, 185, 1-15. | 1.1 | 7         |
| 122 | Glacially Induced Stress Across the Arctic From the Eemian Interglacial to the Present—Implications<br>for Faulting and Methane Seepage. Journal of Geophysical Research: Solid Earth, 2022, 127, .                 | 1.4 | 7         |
| 123 | Evaluating Younger Dryas glacier reconstructions in part of the western Scottish Highlands: a combined empirical and theoretical approach. Boreas, 2005, 34, 274-286.                                               | 1.2 | 6         |
| 124 | Rock glaciers in central Patagonia. Geografiska Annaler, Series A: Physical Geography, 2019, 101, 1-15.                                                                                                             | 0.6 | 6         |
| 125 | Early and Middle Pleistocene environments, landforms and sediments in Scotland. Earth and<br>Environmental Science Transactions of the Royal Society of Edinburgh, 2019, 110, 5-37.                                 | 0.3 | 5         |
| 126 | Hydrocarbon leakage driven by Quaternary glaciations in the Barents Sea based on 2D basin and petroleum system modeling. Marine and Petroleum Geology, 2022, 138, 105557.                                           | 1.5 | 4         |

| #   | Article                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Temporal Variability of Surface Reflectance Supersedes Spatial Resolution in Defining Greenland's<br>Bare-Ice Albedo. Remote Sensing, 2022, 14, 62.                                  | 1.8 | 4         |
| 128 | The Times Atlas and actual Greenland ice loss. Geology Today, 2011, 27, 212-215.                                                                                                     | 0.3 | 3         |
| 129 | A Multidisciplined Approach to the Reconstruction of the Late Weichselian Deglaciation of Iceland. ,<br>0, , 114-120.                                                                |     | 2         |
| 130 | Rapid Surface Lowering of Benito Glacier, Northern Patagonian Icefield. Frontiers in Earth Science, 2018, 6, .                                                                       | 0.8 | 2         |
| 131 | Methods for Predicting the Likelihood of Safe Fieldwork Conditions in Harsh Environments.<br>Frontiers in Earth Science, 2020, 8, .                                                  | 0.8 | 2         |
| 132 | Is there a climatic control on Icelandic volcanism?. Quaternary Science Advances, 2020, 1, 100004.                                                                                   | 1.1 | 2         |
| 133 | Seismic and Electrical Geophysical Characterization of an Incipient Coastal Open‣ystem Pingo: Lagoon<br>Pingo, Svalbard. Earth and Space Science, 2022, 9, .                         | 1.1 | 2         |
| 134 | Why and How to Write a Highâ€Impact Review Paper: Lessons From Eight Years of Editorial Board Service<br>to <i>Reviews of Geophysics</i> . Reviews of Geophysics, 2017, 55, 860-863. | 9.0 | 1         |
| 135 | Using Field Data to Constrain Ice-Flow Models: A Study of A Small Alpine Glacier. , 0, , 348-352.                                                                                    |     | Ο         |