Kun Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263507/publications.pdf

Version: 2024-02-01

		159358	189595
52	2,919	30	50
papers	citations	h-index	g-index
53	53	53	4735
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	High-performance three-dimensional nanoporous NiO film as a supercapacitor electrode. Journal of Materials Chemistry, 2012, 22, 11062.	6.7	284
2	Enhancing Electron Transfer and Electrocatalytic Activity on Crystalline Carbon-Conjugated g-C ₃ N ₄ . ACS Catalysis, 2018, 8, 1926-1931.	5 . 5	172
3	S-Doped MoP Nanoporous Layer Toward High-Efficiency Hydrogen Evolution in pH-Universal Electrolyte. ACS Catalysis, 2019, 9, 651-659.	5.5	167
4	Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale, 2017, 9, 18318-18325.	2.8	137
5	CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chemical Engineering Journal, 2017, 307, 105-112.	6.6	135
6	Surfaceâ€Modified Porous Carbon Nitride Composites as Highly Efficient Electrocatalyst for Znâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1701642.	10.2	129
7	Selfâ€Supported Tin Sulfide Porous Films for Flexible Aluminumâ€Ion Batteries. Advanced Energy Materials, 2019, 9, 1802543.	10.2	110
8	Flexible RFID Tag Metal Antenna on Paperâ€Based Substrate by Inkjet Printing Technology. Advanced Functional Materials, 2019, 29, 1902579.	7.8	106
9	NiS ₂ /FeS Holey Film as Freestanding Electrode for Highâ€Performance Lithium Battery. Advanced Energy Materials, 2017, 7, 1701309.	10.2	99
10	Overall Water Splitting with Room-Temperature Synthesized NiFe Oxyfluoride Nanoporous Films. ACS Catalysis, 2017, 7, 8406-8412.	5.5	91
11	Paper-Based Inkjet-Printed Flexible Electronic Circuits. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26112-26118.	4.0	90
12	In situ synthesis of SWNTs@MnO 2 /polypyrrole hybrid film as binder-free supercapacitor electrode. Nano Energy, 2014, 9, 245-251.	8.2	89
13	Ionic liquid-based synthesis of MXene. Chemical Communications, 2020, 56, 11082-11085.	2.2	87
14	Periodically Patterned Au-TiO ₂ Heterostructures for Photoelectrochemical Sensor. ACS Sensors, 2017, 2, 621-625.	4.0	86
15	Oneâ€Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angewandte Chemie - International Edition, 2021, 60, 27013-27018.	7.2	82
16	A facile process combined with inkjet printing, surface modification and electroless deposition to fabricate adhesion-enhanced copper patterns on flexible polymer substrates for functional flexible electronics. Electrochimica Acta, 2016, 218, 24-31.	2.6	70
17	Inorganic Porous Films for Renewable Energy Storage. ACS Energy Letters, 2017, 2, 373-390.	8.8	68
18	Strained W(Se _{<i>x</i>} S _{1–<i>x</i>}) ₂ Nanoporous Films for Highly Efficient Hydrogen Evolution. ACS Energy Letters, 2017, 2, 1315-1320.	8.8	64

#	Article	IF	CITATIONS
19	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid. Advanced Functional Materials, 2021, 31, 2104007.	7.8	64
20	Integration of Au nanoparticles with a g-C ₃ N ₄ based heterostructure: switching charge transfer from type-II to Z-scheme for enhanced visible light photocatalysis. Chemical Communications, 2018, 54, 3747-3750.	2.2	56
21	A freestanding NiS _x porous film as a binder-free electrode for Mg-ion batteries. Chemical Communications, 2017, 53, 7608-7611.	2.2	54
22	Pre-Sodiated Ti ₃ C ₂ T _{<i>x</i>} MXene Structure and Behavior as Electrode for Sodium-Ion Capacitors. ACS Nano, 2021, 15, 2994-3003.	7.3	54
23	Temperatureâ€dependent Raman scattering in ferroelectric Bi _{4â^'<i>x</i>} Nd _{<i>x</i>} Ti ₃ O ₁₂ (<i>x</i> = 0, 0.5, 0.85) single crystals. Journal of Raman Spectroscopy, 2009, 40, 2088-2091.	1.2	53
24	Enhanced Photoelectrocatalytic Reduction of Oxygen Using Au@TiO ₂ Plasmonic Film. ACS Applied Materials & Distriction of Oxygen Using Au@TiO ₂ Plasmonic Film. ACS Applied Materials & Distriction of Oxygen Using Au@TiO ₂	4.0	52
25	LaNiO3/NiO hollow nanofibers with mesoporous wall: a significant improvement in NiO electrodes for supercapacitors. Journal of Solid State Electrochemistry, 2015, 19, 629-637.	1.2	50
26	Synthesis of new <scp>twoâ€dimensional</scp> titanium carbonitride <scp>Ti₂C</scp> _. <scp>₅N_O</scp> _{.5<!--<br-->and its performance as an electrode material for <scp>sodiumâ€ion</scp> battery. InformaÄnÃ-Materiály, 2021, 3, 1422-1430.}	sub>T <sul< td=""><td>b>qizx</td></sul<>	b>qizx
27	Facile preparation of a high-quality copper layer on epoxy resin <i>via</i> electroless plating for applications in electromagnetic interference shielding. Journal of Materials Chemistry C, 2017, 5, 12769-12776.	2.7	41
28	Mesoporous LaNiO3/NiO nanostructured thin films for high-performance supercapacitors. Journal of Materials Chemistry A, 2013, 1, 9730.	5.2	40
29	Freestanding NiFe Oxyfluoride Holey Film with Ultrahigh Volumetric Capacitance for Flexible Asymmetric Supercapacitors. Small, 2018, 14, 1702295.	5.2	34
30	Significantly Improved Cyclability of Conversionâ€Type Transition Metal Oxyfluoride Cathodes by Homologous Passivation Layer Reconstruction. Advanced Energy Materials, 2020, 10, 1903333.	10.2	33
31	Ultrafine V ₂ O ₅ Nanowires in 3D Current Collector for Highâ€Performance Supercapacitor. ChemElectroChem, 2016, 3, 704-708.	1.7	31
32	Fabrication and characterization of a nanoporous NiO film with high specific energy and power via an electrochemical dealloying approach. Materials Research Bulletin, 2013, 48, 3829-3833.	2.7	28
33	Tailorable polypyrrole nanofilms with exceptional electrochemical performance for all-solid-state flexible supercapacitors. Electrochimica Acta, 2017, 249, 360-368.	2.6	28
34	One-step route synthesis of active carbon@La2NiO4/NiO hybrid coatings as supercapacitor electrode materials: Significant improvements in electrochemical performance. Journal of Electroanalytical Chemistry, 2015, 742, 1-7.	1.9	25
35	Determination and Visualization of Different Levels of Deoxynivalenol in Bulk Wheat Kernels by Hyperspectral Imaging. Journal of Applied Spectroscopy, 2018, 85, 953-961.	0.3	22
36	Two-dimensional titanium carbonitride MXene as a highly efficient electrocatalyst for hydrogen evolution reaction. Materials Reports Energy, 2022, 2, 100075.	1.7	20

#	Article	IF	CITATIONS
37	Nickel Sulfide Freestanding Holey Films as Air-Breathing Electrodes for Flexible Zn–Air Batteries. Journal of Physical Chemistry Letters, 2018, 9, 2746-2750.	2.1	19
38	Interface-engineered hematite nanocones as binder-free electrodes for high-performance lithium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 13968-13974.	5.2	18
39	Oneâ€Pot Green Process to Synthesize MXene with Controllable Surface Terminations using Molten Salts. Angewandte Chemie, 2021, 133, 27219-27224.	1.6	16
40	Nanostructured manganese oxides electrode with ultra-long lifetime for electrochemical capacitors. RSC Advances, 2020, 10, 16817-16825.	1.7	13
41	Scaling behavior of dynamic hysteresis in Bi3.15Nd0.85Ti3O12 ceramics. Journal of Materials Science: Materials in Electronics, 2016, 27, 7755-7759.	1.1	12
42	Magnetic anisotropy of epitaxial La2/3Sr1/3MnO3 thin films on SrTiO3 with different orientations. AlP Advances, 2016, 6, .	0.6	9
43	Effect of interface coupling on magnetoelectric response of Pb(Zr0.52Ti0.48)O3/La0.67Sr0.33MnO3 thin film under different strain states. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	7
44	Layered Nanoâ€Mosaic of Niobium Disulfide Heterostructures by Direct Sulfidation of Niobium Carbide MXenes for Hydrogen Evolution. Advanced Materials Interfaces, 2022, 9, .	1,9	6
45	Investigation of preparation and characteristics of Sn–Bi eutectic powders derived from a high shear mechanical approach. Journal of Alloys and Compounds, 2011, 509, 9836-9841.	2.8	5
46	A facile chemical route to synthesize copper particles-modified LiFe0.95Mo0.05PO4 for lithium-ion batteries. Materials Letters, 2017, 196, 4-7.	1.3	5
47	Egyptian blue: from pigment to battery electrodes. RSC Advances, 2021, 11, 19885-19889.	1.7	3
48	Resonance magnetoelectric characteristics of Terfenol-D/Pb(Zr0.52Ti0.48)O3/Ni asymmetric three layered composites. IOP Conference Series: Materials Science and Engineering, 2019, 656, 012056.	0.3	2
49	Combining Hyperspectral Imaging and Feature Wavelength Extraction Methods for the Rapid Discrimination of Red Meat. Journal of Applied Spectroscopy, 2020, 87, 296-302.	0.3	2
50	Engineering the Interlayer Spacing by Preâ€Intercalation for High Performance Supercapacitor MXene Electrodes in Room Temperature Ionic Liquid (Adv. Funct. Mater. 33/2021). Advanced Functional Materials, 2021, 31, 2170246.	7.8	2
51	Data analysis preparation and characterization of porous manganese oxide films for super capacitor by cathodic electrode position. , 0, , .		0
52	Back Cover Image. InformaÄnÃ-Materiály, 2021, 3, .	8.5	0