
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2634678/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bioinspired fish-scale-like magnesium composites strengthened by contextures of continuous titanium fibers: Lessons from nature. Journal of Magnesium and Alloys, 2023, 11, 869-881.	11.9	6
2	Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation. Journal of Materials Science and Technology, 2022, 102, 36-45.	10.7	16
3	Bioinspired tungsten-copper composites with Bouligand-type architectures mimicking fish scales. Journal of Materials Science and Technology, 2022, 96, 21-30.	10.7	16
4	Physical Properties of High Entropy Alloys. , 2022, , 474-483.		0
5	Bone manganese is a sensitive biomarker of ongoing elevated manganese exposure, but does not accumulate across the lifespan. Environmental Research, 2022, 204, 112355.	7.5	8
6	Fatigue-crack propagation behavior in a high-carbon chromium SUJ2 bearing steel: Role of microstructure. International Journal of Fatigue, 2022, 156, 106693.	5.7	11
7	Comparison of toughening mechanisms in natural silk-reinforced composites with three epoxy resin matrices. Composites Part A: Applied Science and Manufacturing, 2022, 154, 106760.	7.6	32
8	Cantor-derived medium-entropy alloys: bridging the gap between traditional metallic and high-entropy alloys. Journal of Materials Research and Technology, 2022, 17, 1868-1895.	5.8	44
9	Fracture properties of high-entropy alloys. MRS Bulletin, 2022, 47, 176-185.	3.5	11
10	High-entropy materials. MRS Bulletin, 2022, 47, 145-150.	3.5	22
11	Role of chemical disorder on radiation-induced defect production and damage evolution in NiFeCoCr. Journal of Nuclear Materials, 2022, 565, 153689.	2.7	3
12	Interfacial characterization and its influence on the corrosion behavior of Mg-SiO2 nanocomposites. Acta Materialia, 2022, 230, 117840.	7.9	13
13	Response to Comment on "Cryoforged nanotwinned titanium with ultrahigh strength and ductility― Science, 2022, 376, eabo5247.	12.6	2
14	Conductive Ink with Circular Life Cycle for Printed Electronics. Advanced Materials, 2022, 34, e2202177.	21.0	20
15	Anomalous size effect on yield strength enabled by compositional heterogeneity in high-entropy alloy nanoparticles. Nature Communications, 2022, 13, 2789.	12.8	26
16	On the damage tolerance of 3-D printed Mg-Ti interpenetrating-phase composites with bioinspired architectures. Nature Communications, 2022, 13, .	12.8	58
17	Understanding effects of chemical complexity on helium bubble formation in Ni-based concentrated solid solution alloys based on elemental segregation measurements. Journal of Nuclear Materials, 2022, 569, 153902.	2.7	4
18	Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification. Journal of Materials Science and Technology, 2021, 61, 100-113.	10.7	18

#	Article	IF	CITATIONS
19	Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy. Journal of Materials Science and Technology, 2021, 62, 234-248.	10.7	68
20	Origin of strong solid solution strengthening in the CrCoNi-W medium entropy alloy. Journal of Materials Science and Technology, 2021, 73, 101-107.	10.7	39
21	Heterostructured materials: superior properties from hetero-zone interaction. Materials Research Letters, 2021, 9, 1-31.	8.7	505
22	Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. Journal of Materials Research, 2021, 36, 298-310.	2.6	15
23	Application to subcritical crack growth. , 2021, , 101-138.		0
24	Micromechanics modeling of fracture. , 2021, , 81-99.		1
25	Nonlinear-elastic fracture mechanics (NLEFM). , 2021, , 49-74.		0
26	Linear-elastic fracture mechanics (LEFM). , 2021, , 11-48.		1
27	Universal nature of the saddle states of structural excitations in metallic glasses. Materials Today Physics, 2021, 17, 100359.	6.0	20
28	Magnetically driven short-range order can explain anomalous measurements in CrCoNi. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	56
29	Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Materials Science and Engineering Reports, 2021, 144, 100606.	31.8	316
30	Near-complete depolymerization of polyesters with nano-dispersed enzymes. Nature, 2021, 592, 558-563.	27.8	129
31	Strong and Tough Bioinspired Additive-Manufactured Dual-Phase Mechanical Metamaterial Composites. Journal of the Mechanics and Physics of Solids, 2021, 149, 104341.	4.8	72
32	Compressive properties of 3-D printed Mg–NiTi interpenetrating-phase composite: Effects of strain rate and temperature. Composites Part B: Engineering, 2021, 215, 108783.	12.0	16
33	Toughening materials: enhancing resistance to fracture. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200437.	3.4	32
34	Hydration-induced reversible deformation of the pine cone. Acta Biomaterialia, 2021, 128, 370-383.	8.3	24
35	In situ observation of the deformation and fracture of an alumina-alumina ceramic-matrix composite at elevated temperature using x-ray computed tomography. Journal of the European Ceramic Society, 2021, 41, 4217-4230.	5.7	20
36	Impact of hydration on the mechanical properties and damage mechanisms of natural silk fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 2021, 147, 106458.	7.6	11

#	Article	IF	CITATIONS
37	Atomistic simulations of dislocation mobility in refractory high-entropy alloys and the effect of chemical short-range order. Nature Communications, 2021, 12, 4873.	12.8	138
38	An Amorphous Periâ€Implant Ligament with Combined Osteointegration and Energyâ€Dissipation. Advanced Materials, 2021, 33, e2103727.	21.0	18
39	The dependence of stress and strain rate on the deformation behavior of aÂNiâ€based single crystal superalloy at 1050°C. International Journal of Mechanical System Dynamics, 2021, 1, 121-131.	2.8	6
40	Cryoforged nanotwinned titanium with ultrahigh strength and ductility. Science, 2021, 373, 1363-1368.	12.6	155
41	Flaw-insensitive fracture of a micrometer-sized brittle metallic glass. Acta Materialia, 2021, 218, 117219.	7.9	17
42	Compression fatigue properties and damage mechanisms of a bioinspired nacre-like ceramic-polymer composite. Scripta Materialia, 2021, 203, 114089.	5.2	16
43	Full-field characterisation of oxide-oxide ceramic-matrix composites using X-ray computed micro-tomography and digital volume correlation under load at high temperatures. Materials and Design, 2021, 208, 109899.	7.0	21
44	Dissipative dual-phase mechanical metamaterial composites via architectural design. Extreme Mechanics Letters, 2021, 48, 101442.	4.1	30
45	Dual-gradient structure leads to optimized combination of high fracture resistance and strength-ductility synergy with minimized final catastrophic failure. Journal of Materials Research and Technology, 2021, 15, 901-910.	5.8	7
46	First-principles calculation of lattice distortions in four single phase high entropy alloys with experimental validation. Materials and Design, 2021, 209, 110071.	7.0	15
47	Collagen Fiber Orientation Is Coupled with Specific Nano-Compositional Patterns in <i>Dark</i> and <i>Bright</i> Osteons Modulating Their Biomechanical Properties. ACS Nano, 2021, 15, 455-467.	14.6	28
48	Amorphization in extreme deformation of the CrMnFeCoNi high-entropy alloy. Science Advances, 2021, 7, .	10.3	140
49	Modeling the Hydrogen Effect on the Constitutive Response of a Low Carbon Steel in Cyclic Loading. Journal of Applied Mechanics, Transactions ASME, 2021, 88, .	2.2	3
50	Diffusion-mediated chemical concentration variation and void evolution in ion-irradiated NiCoFeCr high-entropy alloy. Journal of Materials Research, 2021, 36, 1-13.	2.6	3
51	The dynamic evolution of swelling in nickel concentrated solid solution alloys through inÂsitu property monitoring. Applied Materials Today, 2021, 25, 101187.	4.3	4
52	An <i>in situ</i> ambient and cryogenic transmission electron microscopy study of the effects of temperature on dislocation behavior in CrCoNi-based high-entropy alloys with low stacking-fault energy. Applied Physics Letters, 2021, 119, .	3.3	8
53	Nanoparticle additions promote outstanding fracture toughness and fatigue strength in a cast Al–Cu alloy. Materials and Design, 2020, 186, 108221.	7.0	17
54	On the exceptional damage-tolerance of gradient metallic materials. Materials Today, 2020, 32, 94-107.	14.2	89

#	Article	IF	CITATIONS
55	Intrinsic toughness of the bulk-metallic glass Vitreloy 105 measured using micro-cantilever beams. Acta Materialia, 2020, 183, 242-248.	7.9	20
56	Electron-phonon coupling induced defect recovery and strain relaxation in Ni and equiatomic NiFe alloy. Computational Materials Science, 2020, 173, 109394.	3.0	9
57	Structural Orientation and Anisotropy in Biological Materials: Functional Designs and Mechanics. Advanced Functional Materials, 2020, 30, 1908121.	14.9	59
58	On the Strength of Hair across Species. Matter, 2020, 2, 136-149.	10.0	18
59	Interfacial toughening effect of suture structures. Acta Biomaterialia, 2020, 102, 75-82.	8.3	28
60	X-ray tomography study on the crushing strength and irradiation behaviour of dedicated tristructural isotropic nuclear fuel particles at 1000°C. Materials and Design, 2020, 187, 108382.	7.0	13
61	From suppressed void growth to significant void swelling in NiCoFeCr complex concentrated solid-solution alloy. Materialia, 2020, 9, 100603.	2.7	22
62	Processing, Microstructures and Mechanical Properties of a Ni-Based Single Crystal Superalloy. Crystals, 2020, 10, 572.	2.2	21
63	Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids. Cell Reports Physical Science, 2020, 1, 100109.	5.6	27
64	The role of collagen in the dermal armor of the boxfish. Journal of Materials Research and Technology, 2020, 9, 13825-13841.	5.8	7
65	Offering Toughness and Protection, Arapaima Scales Provide Effective Defense against Predation. Matter, 2020, 3, 1979-1980.	10.0	0
66	On the gular sac tissue of the brown pelican: Structural characterization and mechanical properties. Acta Biomaterialia, 2020, 118, 161-181.	8.3	3
67	Ab initio modeling of the energy landscape for screw dislocations in body-centered cubic high-entropy alloys. Npj Computational Materials, 2020, 6, .	8.7	58
68	Structure and Mechanical Adaptability of a Modern Elasmoid Fish Scale from the Common Carp. Matter, 2020, 3, 842-863.	10.0	47
69	Nacre toughening due to cooperative plastic deformation of stacks of co-oriented aragonite platelets. Communications Materials, 2020, 1, .	6.9	24
70	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
71	Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy. Acta Materialia, 2020, 200, 351-365.	7.9	76
72	Short-range order and its impact on the CrCoNi medium-entropy alloy. Nature, 2020, 581, 283-287.	27.8	672

#	Article	IF	CITATIONS
73	Making ultrastrong steel tough by grain-boundary delamination. Science, 2020, 368, 1347-1352.	12.6	200
74	3D printed Mg-NiTi interpenetrating-phase composites with high strength, damping capacity, and energy absorption efficiency. Science Advances, 2020, 6, eaba5581.	10.3	87
75	Active defense mechanisms of thorny catfish. Materials Today, 2020, 38, 35-48.	14.2	8
76	Dislocation loop evolution and radiation hardening in nickel-based concentrated solid solution alloys. Journal of Nuclear Materials, 2020, 538, 152247.	2.7	22
77	The influence of mean strain on the high-cycle fatigue of Nitinol with application to medical devices. Journal of the Mechanics and Physics of Solids, 2020, 143, 104057.	4.8	24
78	Mechanical properties and toughening mechanisms of natural silkworm silks and their composites. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 110, 103942.	3.1	18
79	Controlled Cryogelation and Catalytic Cross-Linking Yields Highly Elastic and Robust Silk Fibroin Scaffolds. ACS Biomaterials Science and Engineering, 2020, 6, 4512-4522.	5.2	13
80	Eutectic Crystallization: Multiâ€Step Crystallization of Selfâ€Organized Spiral Eutectics (Small 8/2020). Small, 2020, 16, 2070039.	10.0	0
81	Interpreting nanovoids in atom probe tomography data for accurate local compositional measurements. Nature Communications, 2020, 11, 1022.	12.8	23
82	Extreme Fermi Surface Smearing in a Maximally Disordered Concentrated Solid Solution. Physical Review Letters, 2020, 124, 046402.	7.8	20
83	Compressive ductility and fracture resistance in CuZr-based shape-memory metallic-glass composites. International Journal of Plasticity, 2020, 128, 102687.	8.8	33
84	Real-time observations of TRIP-induced ultrahigh strain hardening in a dual-phase CrMnFeCoNi high-entropy alloy. Nature Communications, 2020, 11, 826.	12.8	165
85	Multiâ€5tep Crystallization of Selfâ€Organized Spiral Eutectics. Small, 2020, 16, e1906146.	10.0	11
86	Unfolding the complexity of phonon quasi-particle physics in disordered materials. Npj Computational Materials, 2020, 6, .	8.7	22
87	Scalable Electrically Conductive Spray Coating Based on Block Copolymer Nanocomposites. ACS Applied Materials & Interfaces, 2020, 12, 8687-8694.	8.0	12
88	Longâ€Term Immobilization in Elderly Females Causes a Specific Pattern of Cortical Bone and Osteocyte Deterioration Different From Postmenopausal Osteoporosis. Journal of Bone and Mineral Research, 2020, 35, 1343-1351.	2.8	47
89	Ice-templated porous tungsten and tungsten carbide inspired by natural wood. Journal of Materials Science and Technology, 2020, 45, 187-197.	10.7	33
90	Site occupancy of alloying elements in γ′ phase of nickel-base single crystal superalloys. Intermetallics, 2020, 121, 106772.	3.9	23

#	Article	IF	CITATIONS
91	Tensile creep behavior of an equiatomic CoCrNi medium entropy alloy. Intermetallics, 2020, 121, 106775.	3.9	23
92	On the impact toughness of gradient-structured metals. Acta Materialia, 2020, 193, 125-137.	7.9	70
93	On the Fracture Behavior of Bulk Metallic Glasses. Structural Integrity, 2019, , 331-332.	1.4	0
94	Interpreting Voids in Atom Probe Tomography Data via Experiment and Theory. Microscopy and Microanalysis, 2019, 25, 290-291.	0.4	0
95	Investigating Effects of Alloy Chemical Complexity on Helium Bubble Formation by Accurate Segregation Measurements Using Atom Probe Tomography. Microscopy and Microanalysis, 2019, 25, 1558-1559.	0.4	6
96	Synthesis of bioinspired ice-templated bulk metallic glass-alumina composites with intertwined dendritic structure. Scripta Materialia, 2019, 172, 159-164.	5.2	13
97	Integrating tough Antheraea pernyi silk and strong carbon fibres for impact-critical structural composites. Nature Communications, 2019, 10, 3786.	12.8	70
98	Biomimetics: On the Origins of Fracture Toughness in Advanced Teleosts: How the Swordfish Sword's Bone Structure and Composition Allow for Slashing under Water to Kill or Stun Prey (Adv. Sci.) Tj ETQq0 0 0 rgB	[/ @1/.e rloc	k 110 Tf 50 45
99	Hyperelastic phase-field fracture mechanics modeling of the toughening induced by Bouligand structures in natural materials. Journal of the Mechanics and Physics of Solids, 2019, 131, 204-220.	4.8	50
100	Multiscale Toughening Mechanisms in Biological Materials and Bioinspired Designs. Advanced Materials, 2019, 31, e1901561.	21.0	342
101	Plastic deformation mechanism of Ti–Nb–Ta–Zr–O alloy at cryogenic temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 765, 138293.	5.6	11
102	Arapaima Fish Scale: One of the Toughest Flexible Biological Materials. Matter, 2019, 1, 1557-1566.	10.0	40
103	Effects of 3d electron configurations on helium bubble formation and void swelling in concentrated solid-solution alloys. Acta Materialia, 2019, 181, 519-529.	7.9	40
104	Natureâ€Inspired Nacreâ€Like Composites Combining Human Toothâ€Matching Elasticity and Hardness with Exceptional Damage Tolerance. Advanced Materials, 2019, 31, e1904603.	21.0	73
105	Four Dimensional Scanning Transmission Electron Microscopy during the in situ Annealing of a CuZrAl Bulk Metallic Glass. Microscopy and Microanalysis, 2019, 25, 1470-1471.	0.4	0
106	Strong, Fracture-Resistant Biomimetic Silicon Carbide Composites with Laminated Interwoven Nanoarchitectures Inspired by the Crustacean Exoskeleton. ACS Applied Nano Materials, 2019, 2, 1111-1119.	5.0	22
107	Facile self-assembly synthesis of γ-Fe2O3 /graphene oxide for enhanced photo-Fenton reaction. Environmental Pollution, 2019, 248, 229-237.	7.5	59
108	Bioinspired Nacre‣ike Alumina with a Metallic Nickel Compliant Phase Fabricated by Sparkâ€Plasma Sintering. Small, 2019, 15, 1900573.	10.0	28

#	Article	lF	CITATIONS
109	High-entropy alloys. Nature Reviews Materials, 2019, 4, 515-534.	48.7	2,188
110	Helical van der Waals crystals with discretized Eshelby twist. Nature, 2019, 570, 358-362.	27.8	91
111	Irradiation effects of medium-entropy alloy NiCoCr with and without pre-indentation. Journal of Nuclear Materials, 2019, 524, 60-66.	2.7	25
112	Direct measurement of nanostructural change during in situ deformation of a bulk metallic glass. Nature Communications, 2019, 10, 2445.	12.8	46
113	On the onset of deformation twinning in the CrFeMnCoNi high-entropy alloy using a novel tensile specimen geometry. Intermetallics, 2019, 110, 106469.	3.9	21
114	Defect evolution in Ni and NiCoCr by in situ 2.8â€ [−] MeV Au irradiation. Journal of Nuclear Materials, 2019, 523, 502-509.	2.7	15
115	Temperature-dependent defect accumulation and evolution in Ni-irradiated NiFe concentrated solid-solution alloy. Journal of Nuclear Materials, 2019, 519, 1-9.	2.7	16
116	Investigating sluggish diffusion in a concentrated solid solution alloy using ion irradiation with in situ TEM. Intermetallics, 2019, 110, 106461.	3.9	22
117	Temperature and load-ratio dependent fatigue-crack growth in the CrMnFeCoNi high-entropy alloy. Journal of Alloys and Compounds, 2019, 794, 525-533.	5.5	74
118	How Water Can Affect Keratin: Hydrationâ€Driven Recovery of Bighorn Sheep (Ovis Canadensis) Horns. Advanced Functional Materials, 2019, 29, 1901077.	14.9	29
119	On the Origins of Fracture Toughness in Advanced Teleosts: How the Swordfish Sword's Bone Structure and Composition Allow for Slashing under Water to Kill or Stun Prey. Advanced Science, 2019, 6, 1900287.	11.2	14
120	Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying. Acta Materialia, 2019, 171, 216-230.	7.9	47
121	Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 94, 10-18.	3.1	23
122	Mechanical Competence and Bone Quality Develop During Skeletal Growth. Journal of Bone and Mineral Research, 2019, 34, 1461-1472.	2.8	41
123	Shape-preserving machining produces gradient nanolaminate medium entropy alloys with high strain hardening capability. Acta Materialia, 2019, 170, 176-186.	7.9	41
124	Real-time nanoscale observation of deformation mechanisms in CrCoNi-based medium- to high-entropy alloys at cryogenic temperatures. Materials Today, 2019, 25, 21-27.	14.2	167
125	A comparative characterization of defect structure in NiCo and NiFe equimolar solid solution alloys under in situ electron irradiation. Scripta Materialia, 2019, 166, 96-101.	5.2	5
126	Predicting surface deformation during mechanical attrition of metallic alloys. Npj Computational Materials, 2019, 5, .	8.7	23

#	Article	IF	CITATIONS
127	A natural energy absorbent polymer composite: The equine hoof wall. Acta Biomaterialia, 2019, 90, 267-277.	8.3	47
128	Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phase. Nature Communications, 2019, 10, 961.	12.8	106
129	Characterization of the Interfacial Toughness in a Novel "GaN-on-Diamond―Material for High-Power RF Devices. ACS Applied Electronic Materials, 2019, 1, 354-369.	4.3	13
130	Architecture of high-strength aluminum–matrix composites processed by a novel microcasting technique. NPG Asia Materials, 2019, 11, .	7.9	34
131	Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature, 2019, 574, 223-227.	27.8	874
132	High-temperature damage-tolerance of coextruded, bioinspired ("nacre-likeâ€) , alumina/nickel compliant-phase ceramics. Scripta Materialia, 2019, 158, 110-115.	5.2	25
133	Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Progress in Materials Science, 2019, 102, 296-345.	32.8	634
134	Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials. Acta Biomaterialia, 2019, 86, 96-108.	8.3	31
135	Structural architectures with toughening mechanisms in Nature: A review of the materials science of Type-I collagenous materials. Progress in Materials Science, 2019, 103, 425-483.	32.8	78
136	Helium irradiated cavity formation and defect energetics in Ni-based binary single-phase concentrated solid solution alloys. Acta Materialia, 2019, 164, 283-292.	7.9	44
137	Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibres. Composites Part A: Applied Science and Manufacturing, 2019, 117, 357-368.	7.6	56
138	Fracture toughness of ultra-high molecular weight polyethylene: A basis for defining the crack-initiation toughness in polymers. Journal of the Mechanics and Physics of Solids, 2019, 122, 435-449.	4.8	9
139	Radiation-induced extreme elastic and inelastic interactions in concentrated solid solutions. Materials and Design, 2018, 150, 1-8.	7.0	15
140	Spatial correlation of elastic heterogeneity tunes the deformation behavior of metallic glasses. Npj Computational Materials, 2018, 4, .	8.7	70
141	A study of size effects in bioinspired, "nacre-likeâ€, metal-compliant-phase (nickel-alumina) coextruded ceramics. Acta Materialia, 2018, 148, 147-155.	7.9	56
142	Increasing M ₂ (dobdc) Loading in Selective Mixed-Matrix Membranes: A Rubber Toughening Approach. Chemistry of Materials, 2018, 30, 1484-1495.	6.7	41
143	Contributions of Material Properties and Structure to Increased Bone Fragility for a Given Bone Mass in the UCD-T2DM Rat Model of Type 2 Diabetes. Journal of Bone and Mineral Research, 2018, 33, 1066-1075.	2.8	57
144	Fatigue as the missing link between bone fragility and fracture. Nature Biomedical Engineering, 2018, 2, 62-71.	22.5	57

#	Article	IF	CITATIONS
145	Hydrogen-enhanced-plasticity mediated decohesion for hydrogen-induced intergranular and "quasi-cleavage―fracture of lath martensitic steels. Journal of the Mechanics and Physics of Solids, 2018, 112, 403-430.	4.8	225
146	Electrically reversible cracks in an intermetallic film controlled by an electric field. Nature Communications, 2018, 9, 41.	12.8	53
147	Microband induced plasticity and the temperature dependence of the mechanical properties of a carbon-doped FeNiMnAlCr high entropy alloy. Materials Characterization, 2018, 139, 373-381.	4.4	44
148	Microscopic mechanisms of deformation transfer in high dynamic range branched nanoparticle deformation sensors. Nature Communications, 2018, 9, 1155.	12.8	4
149	Nature-Inspired Hierarchical Steels. Scientific Reports, 2018, 8, 5088.	3.3	47
150	Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys. Materials Research Letters, 2018, 6, 293-299.	8.7	52
151	Lattice Distortion and Phase Stability of Pd-Doped NiCoFeCr Solid-Solution Alloys. Entropy, 2018, 20, 900.	2.2	27
152	Design and strengthening mechanisms in hierarchical architected materials processed using additive manufacturing. International Journal of Mechanical Sciences, 2018, 149, 150-163.	6.7	91
153	Hydration-induced nano- to micro-scale self-recovery of the tooth enamel of the giant panda. Acta Biomaterialia, 2018, 81, 267-277.	8.3	19
154	Novel Defense Mechanisms in the Armor of the Scales of the "Living Fossil―Coelacanth Fish. Advanced Functional Materials, 2018, 28, 1804237.	14.9	61
155	Melts of CrCoNi-based high-entropy alloys: Atomic diffusion and electronic/atomic structure from <i>ab initio</i> simulation. Applied Physics Letters, 2018, 113, .	3.3	27
156	Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. Journal of Materials Research, 2018, 33, 3077-3091.	2.6	47
157	In situ neutron diffraction study on tensile deformation behavior of carbon-strengthened CoCrFeMnNi high-entropy alloys at room and elevated temperatures. Journal of Materials Research, 2018, 33, 3192-3203.	2.6	7
158	Nanometer-scale gradient atomic packing structure surrounding soft spots in metallic glasses. Npj Computational Materials, 2018, 4, .	8.7	37
159	Enhanced strength and ductility of a tungsten-doped CoCrNi medium-entropy alloy. Journal of Materials Research, 2018, 33, 3301-3309.	2.6	51
160	Single-Phase Concentrated Solid-Solution Alloys: Bridging Intrinsic Transport Properties and Irradiation Resistance. Frontiers in Materials, 2018, 5, .	2.4	45
161	On the theoretical modeling of fatigue crack growth. Journal of the Mechanics and Physics of Solids, 2018, 121, 341-362.	4.8	55
162	Enhanced void swelling in NiCoFeCrPd high-entropy alloy by indentation-induced dislocations. Materials Research Letters, 2018, 6, 584-591.	8.7	46

#	Article	IF	CITATIONS
163	In situ Nanobeam Electron Diffraction of Bulk Metallic Glasses. Microscopy and Microanalysis, 2018, 24, 206-207.	0.4	1
164	Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8919-8924.	7.1	495
165	On the Materials Science of Nature's Arms Race. Advanced Materials, 2018, 30, e1705220.	21.0	63
166	Chemical complexity induced local structural distortion in NiCoFeMnCr high-entropy alloy. Materials Research Letters, 2018, 6, 450-455.	8.7	54
167	On the understanding of the effects of sample size on the variability in fracture toughness of bulk metallic glasses. Acta Materialia, 2017, 126, 494-506.	7.9	37
168	Characterizing Photon Reabsorption in Quantum Dot-Polymer Composites for Use as Displacement Sensors. ACS Nano, 2017, 11, 2075-2084.	14.6	32
169	Radiation-induced segregation on defect clusters in single-phase concentrated solid-solution alloys. Acta Materialia, 2017, 127, 98-107.	7.9	212
170	Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy. Nature Communications, 2017, 8, 14390.	12.8	344
171	Long-fiber reinforced thermoplastic composite lattice structures: Fabrication and compressive properties. Composites Part A: Applied Science and Manufacturing, 2017, 97, 41-50.	7.6	32
172	X-ray absorption investigation of local structural disorder in Ni1-xFex (x = 0.10, 0.20, 0.35, and 0.50) alloys. Journal of Applied Physics, 2017, 121, 165105.	2.5	4
173	Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Progress in Materials Science, 2017, 88, 467-498.	32.8	554
174	Effect of temperature on the fatigue-crack growth behavior of the high-entropy alloy CrMnFeCoNi. Intermetallics, 2017, 88, 65-72.	3.9	160
175	Multiscale structure and damage tolerance of coconut shells. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 76, 76-84.	3.1	50
176	Synchrotron X-ray micro-tomography at the Advanced Light Source: Developments in high-temperature in-situ mechanical testing. Journal of Physics: Conference Series, 2017, 849, 012043.	0.4	6
177	Irradiation-induced damage evolution in concentrated Ni-based alloys. Acta Materialia, 2017, 135, 54-60.	7.9	46
178	High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nature Communications, 2017, 8, 15634.	12.8	241
179	Glucocorticoid suppression of osteocyte perilacunar remodeling is associated with subchondral bone degeneration in osteonecrosis. Scientific Reports, 2017, 7, 44618.	3.3	71
180	Mechanisms of radiation-induced segregation in CrFeCoNi-based single-phase concentrated solid solution alloys. Acta Materialia, 2017, 126, 182-193.	7.9	133

#	Article	IF	CITATIONS
181	Suppression of vacancy cluster growth in concentrated solid solution alloys. Acta Materialia, 2017, 125, 231-237.	7.9	45
182	Probing elastically or plastically induced structural heterogeneities in bulk metallic glasses by nanoindentation pop-in tests. AIP Advances, 2017, 7, .	1.3	5
183	Enhancing the Mechanical Toughness of Epoxy-Resin Composites Using Natural Silk Reinforcements. Scientific Reports, 2017, 7, 11939.	3.3	32
184	Understanding of the Elemental Diffusion Behavior in Concentrated Solid Solution Alloys. Journal of Phase Equilibria and Diffusion, 2017, 38, 434-444.	1.4	65
185	On the question of fractal packing structure in metallic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8458-8463.	7.1	31
186	Atypical fracture with long-term bisphosphonate therapy is associated with altered cortical composition and reduced fracture resistance. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8722-8727.	7.1	122
187	Osteocyte-Intrinsic TGF-β Signaling Regulates Bone Quality through Perilacunar/Canalicular Remodeling. Cell Reports, 2017, 21, 2585-2596.	6.4	128
188	Effects of chemical alternation on damage accumulation in concentrated solid-solution alloys. Scientific Reports, 2017, 7, 4146.	3.3	32
189	Damage tolerance of nuclear graphite at elevated temperatures. Nature Communications, 2017, 8, 15942.	12.8	34
190	Quantum critical behavior in the asymptotic limit of high disorder in the medium entropy alloy NiCoCr0.8. Npj Quantum Materials, 2017, 2, .	5.2	18
191	A comparative study of piscine defense: The scales of Arapaima gigas, Latimeria chalumnae and Atractosteus spatula. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 73, 1-16.	3.1	52
192	High volume-fraction silk fabric reinforcements can improve the key mechanical properties of epoxy resin composites. Materials and Design, 2016, 108, 470-478.	7.0	48
193	Effects of two-temperature model on cascade evolution in Ni and NiFe. Scripta Materialia, 2016, 124, 6-10.	5.2	46
194	Direct Observation of Defect Range and Evolution in Ion-Irradiated Single Crystalline Ni and Ni Binary Alloys. Scientific Reports, 2016, 6, 19994.	3.3	131
195	Effects of Fe concentration on the ion-irradiation induced defect evolution and hardening in Ni-Fe solid solution alloys. Acta Materialia, 2016, 121, 365-373.	7.9	64
196	Encapsulation of Perovskite Nanocrystals into Macroscale Polymer Matrices: Enhanced Stability and Polarization. ACS Applied Materials & Interfaces, 2016, 8, 35523-35533.	8.0	398
197	Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys. Nature Communications, 2016, 7, 13564.	12.8	533
198	Universal structural parameter to quantitatively predict metallic glass properties. Nature Communications, 2016, 7, 13733.	12.8	124

#	Article	IF	CITATIONS
199	High temperature x-ray micro-tomography. AIP Conference Proceedings, 2016, , .	0.4	6
200	Bioinspired Hydroxyapatite/Poly(methyl methacrylate) Composite with a Nacreâ€Mimetic Architecture by a Bidirectional Freezing Method. Advanced Materials, 2016, 28, 50-56.	21.0	319
201	Parallel mechanisms suppress cochlear bone remodeling to protect hearing. Bone, 2016, 89, 7-15.	2.9	37
202	A generalized Read–Shockley model and large scale simulations for the energy and structure of graphene grain boundaries. RSC Advances, 2016, 6, 44489-44497.	3.6	12
203	IDEAL: Images Across Domains, Experiments, Algorithms and Learning. Jom, 2016, 68, 2963-2972.	1.9	21
204	A Novel Approach to Developing Biomimetic ("Nacreâ€Likeâ€) Metalâ€Compliantâ€Phase (Nickel–Alumina) Ceramics through Coextrusion. Advanced Materials, 2016, 28, 10061-10067.	21.0	83
205	Enhanced protective role in materials with gradient structural orientations: Lessons from Nature. Acta Biomaterialia, 2016, 44, 31-40.	8.3	73
206	Giant panda× ³ s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 64, 125-138.	3.1	40
207	Single versus successive pop-in modes in nanoindentation tests of single crystals. Journal of Materials Research, 2016, 31, 2065-2075.	2.6	15
208	Enhanced damage resistance and novel defect structure of CrFeCoNi under in situ electron irradiation. Scripta Materialia, 2016, 125, 5-9.	5.2	62
209	Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. Journal of Materials Research, 2016, 31, 2363-2375.	2.6	110
210	Anomalous structure-property relationships in metallic glasses through pressure-mediated glass formation. Physical Review B, 2016, 93, .	3.2	42
211	Mechanisms of Local Stress Sensing in Multifunctional Polymer Films Using Fluorescent Tetrapod Nanocrystals. Nano Letters, 2016, 16, 5060-5067.	9.1	22
212	Failure mechanisms of single-crystal silicon electrodes in lithium-ion batteries. Nature Communications, 2016, 7, 11886.	12.8	211
213	Instability Analysis and Free Volume Simulations of Shear Band Directions and Arrangements in Notched Metallic Classes. Scientific Reports, 2016, 6, 34878.	3.3	21
214	Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions. Scientific Reports, 2016, 6, 21072.	3.3	65
215	Quantum Critical Behavior in a Concentrated Ternary Solid Solution. Scientific Reports, 2016, 6, 26179.	3.3	50
216	Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Composites Science and Technology, 2016, 131, 98-109.	7.8	81

#	Article	IF	CITATIONS
217	Toughness and strength of nanocrystalline graphene. Nature Communications, 2016, 7, 10546.	12.8	158
218	Cavitation-Induced Stiffness Reductions in Quantum Dot–Polymer Nanocomposites. Chemistry of Materials, 2016, 28, 2540-2549.	6.7	22
219	Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nature Communications, 2016, 7, 10602.	12.8	1,175
220	Notch fatigue of ultrahigh molecular weight polyethylene (UHMWPE) used in total joint replacements. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 60, 267-279.	3.1	19
221	Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporosis International, 2016, 27, 283-294.	3.1	97
222	Bone: Bone as a Structural Material (Adv. Healthcare Mater. 9/2015). Advanced Healthcare Materials, 2015, 4, 1286-1286.	7.6	4
223	Modifications to Nano- and Microstructural Quality and the Effects on Mechanical Integrity in Paget's Disease of Bone. Journal of Bone and Mineral Research, 2015, 30, 264-273.	2.8	50
224	On the correlation between microscopic structural heterogeneity and embrittlement behavior in metallic glasses. Scientific Reports, 2015, 5, 14786.	3.3	70
225	Second-Nearest-Neighbor Correlations from Connection of Atomic Packing Motifs in Metallic Glasses and Liquids. Scientific Reports, 2015, 5, 17429.	3.3	83
226	Bone as a Structural Material. Advanced Healthcare Materials, 2015, 4, 1287-1304.	7.6	142
227	Influence of three-dimensional nanoparticle branching on the Young's modulus of nanocomposites: Effect of interface orientation. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 6533-6538.	7.1	33
228	Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi. Nature Communications, 2015, 6, 10143.	12.8	608
229	Bioinspired large-scale aligned porous materials assembled with dual temperature gradients. Science Advances, 2015, 1, e1500849.	10.3	336
230	Multi-level characterization of human femoral cortices and their underlying osteocyte network reveal trends in quality of young, aged, osteoporotic and antiresorptive-treated bone. Biomaterials, 2015, 45, 46-55.	11.4	93
231	Developing strength and toughness in bio-inspired silicon carbide hybrid materials containing a compliant phase. Acta Materialia, 2015, 98, 141-151.	7.9	106
232	Prevention of glucocorticoid induced bone changes with beta-ecdysone. Bone, 2015, 74, 48-57.	2.9	27
233	On the tear resistance of skin. Nature Communications, 2015, 6, 6649.	12.8	297
234	β-Ecdysone Augments Peak Bone Mass in Mice of Both Sexes. Clinical Orthopaedics and Related Research, 2015, 473, 2495-2504.	1.5	11

#	Article	IF	CITATIONS
235	Alendronate treatment alters bone tissues at multiple structural levels in healthy canine cortical bone. Bone, 2015, 81, 352-363.	2.9	58
236	Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy. Jom, 2015, 67, 2262-2270.	1.9	177
237	Point defect evolution in Ni, NiFe and NiCr alloys from atomistic simulations and irradiation experiments. Acta Materialia, 2015, 99, 69-76.	7.9	120
238	The effects of annealing on the microstructure and mechanical properties of Fe28Ni18Mn33Al21. Journal of Materials Science, 2015, 50, 7821-7834.	3.7	4
239	The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Reports, 2015, 4, 743.	2.7	114
240	Influence of chemical disorder on energy dissipation and defect evolution in concentrated solid solution alloys. Nature Communications, 2015, 6, 8736.	12.8	477
241	Strain-dependent dynamic mechanical properties of Kevlar to failure: Structural correlations and comparisons to other polymers. Materials Today Communications, 2015, 2, e33-e37.	1.9	27
242	Bioinspired structural materials. Nature Materials, 2015, 14, 23-36.	27.5	3,284
243	Tensile testing of materials at high temperatures above 1700 °C with <i>in situ</i> synchrotron X-ray micro-tomography. Review of Scientific Instruments, 2014, 85, 083702.	1.3	59
244	How Tough Is Brittle Bone? Investigating Osteogenesis Imperfecta in Mouse Bone. Journal of Bone and Mineral Research, 2014, 29, 1392-1401.	2.8	119
245	Stochastic Virtual Tests for High-Temperature Ceramic Matrix Composites. Annual Review of Materials Research, 2014, 44, 479-529.	9.3	64
246	In pursuit of damage tolerance in engineering and biological materials. MRS Bulletin, 2014, 39, 880-890.	3.5	12
247	High-Temperature Creep and Oxidation Behavior of Mo-Si-B Alloys with High Ti Contents. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2014, 45, 1102-1111.	2.2	63
248	Size-dependent fracture toughness of bulk metallic glasses. Acta Materialia, 2014, 70, 198-207.	7.9	83
249	Fracture resistance of human cortical bone across multiple length-scales at physiological strain rates. Biomaterials, 2014, 35, 5472-5481.	11.4	125
250	Armoured oyster shells. Nature Materials, 2014, 13, 435-437.	27.5	35
251	Protective role of Arapaima gigas fish scales: Structure and mechanical behavior. Acta Biomaterialia, 2014, 10, 3599-3614.	8.3	161
252	Scaling strength distributions in quasi-brittle materials from micro- to macro-scales: A computational approach to modeling Nature-inspired structural ceramics. Journal of the Mechanics and Physics of Solids, 2014, 68, 93-106.	4.8	26

#	Article	IF	CITATIONS
253	Unidirectional Freezing of Ceramic Suspensions: In Situ X-ray Investigation of the Effects of Additives. ACS Applied Materials & Interfaces, 2014, 6, 159-166.	8.0	48
254	A fracture-resistant high-entropy alloy for cryogenic applications. Science, 2014, 345, 1153-1158.	12.6	3,982
255	Effect of sequential treatments with alendronate, parathyroid hormone (1–34) and raloxifene on cortical bone mass and strength in ovariectomized rats. Bone, 2014, 67, 257-268.	2.9	24
256	A methodology for the investigation of toughness and crack propagation in mouse bone. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 39, 38-47.	3.1	22
257	Effects of sequential osteoporosis treatments on trabecular bone in adult rats with low bone mass. Osteoporosis International, 2014, 25, 1735-1750.	3.1	20
258	Determination of interfacial mechanical properties of ceramic composites by the compression of micro-pillar test specimens. Journal of Materials Science, 2013, 48, 5219-5224.	3.7	15
259	On the development of ice-templated silicon carbide scaffolds for nature-inspired structural materials. Acta Materialia, 2013, 61, 6948-6957.	7.9	90
260	Correction to Tetrapod Nanocrystals as Fluorescent Stress Probes of Electrospun Nanocomposites. Nano Letters, 2013, 13, 5762-5762.	9.1	1
261	Structure and fracture resistance of alligator gar (Atractosteus spatula) armored fish scales. Acta Biomaterialia, 2013, 9, 5876-5889.	8.3	116
262	Enhanced fatigue endurance of metallic glasses through a staircase-like fracture mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18419-18424.	7.1	43
263	Reversing bone loss by directing mesenchymal stem cells to bone. Stem Cells, 2013, 31, 2003-2014.	3.2	79
264	Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nature Communications, 2013, 4, 2634.	12.8	277
265	Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600 °C. Nature Materials, 2013, 12, 40-46.	27.5	243
266	Proposed pathogenesis for atypical femoral fractures: Lessons from materials research. Bone, 2013, 55, 495-500.	2.9	132
267	Tetrapod Nanocrystals as Fluorescent Stress Probes of Electrospun Nanocomposites. Nano Letters, 2013, 13, 3915-3922.	9.1	58
268	Prolonged alendronate treatment prevents the decline in serum TGF-β1 levels and reduces cortical bone strength in long-term estrogen deficiency rat model. Bone, 2013, 52, 424-432.	2.9	14
269	A Highly Fatigue-Resistant Zr-Based Bulk Metallic Glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 5688-5693.	2.2	32
270	Natural Flexible Dermal Armor. Advanced Materials, 2013, 25, 31-48.	21.0	327

#	Article	IF	CITATIONS
271	Nanocomposites of Titanium Dioxide and Polystyrene-Poly(ethylene oxide) Block Copolymer as Solid-State Electrolytes for Lithium Metal Batteries. Journal of the Electrochemical Society, 2013, 160, A1611-A1617.	2.9	96
272	Effects of machine stiffness on the loading–displacement curve during spherical nano-indentation. Journal of Materials Research, 2013, 28, 1903-1911.	2.6	26
273	Vitamin D Deficiency Induces Early Signs of Aging in Human Bone, Increasing the Risk of Fracture. Science Translational Medicine, 2013, 5, 193ra88.	12.4	146
274	Characterizing Weave Geometry in Textile Ceramic Composites Using Digital Image Correlation. Journal of the American Ceramic Society, 2013, 96, 2362-2365.	3.8	21
275	Elucidating the Nanoscale Structure of Dinosaur Bone. Microscopy Today, 2013, 21, 34-39.	0.3	4
276	Determining Worst-Case Fatigue Thresholds for Grain-Bridging Ceramics. , 2013, , 60-68.		0
277	Mechanical fatigue and fracture of Nitinol. International Materials Reviews, 2012, 57, 1-37.	19.3	306
278	Nanoindentation of pseudoelastic NiTi containing Ni ₄ Ti ₃ precipitates. International Journal of Materials Research, 2012, 103, 1434-1439.	0.3	7
279	Mechanical fatigue as a mechanism of water tree propagation in TR-XLPE. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19, 321-330.	2.9	31
280	Effects of hydrogen on fatigue-crack propagation in steels. , 2012, , 379-417.		10
281	Directing mesenchymal stem cells to bone to augment bone formation and increase bone mass. Nature Medicine, 2012, 18, 456-462.	30.7	242
282	Micromechanical models to guide the development of synthetic â€~brick and mortar' composites. Journal of the Mechanics and Physics of Solids, 2012, 60, 1545-1560.	4.8	182
283	On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti–6Al–4V at elevated temperatures up to 550°C. International Journal of Fatigue, 2012, 44, 292-302.	5.7	230
284	On the fracture toughness of fine-grained Mo-3Si-1B (wt.%) alloys at ambient to elevated (1300°C) temperatures. Intermetallics, 2012, 20, 141-154.	3.9	41
285	Mixed-mode toughness of human cortical bone containing a longitudinal crack in far-field compression. Bone, 2012, 50, 331-336.	2.9	21
286	Mo‧iâ€B Alloys for Ultrahighâ€Temperature Structural Applications. Advanced Materials, 2012, 24, 3445-3480.	21.0	225
287	The Multiscale Origins of Fracture Resistance in Human Bone and Its Biological Degradation. Jom, 2012, 64, 486-493.	1.9	42
288	Characterization and mechanical testing of alumina-based nanocomposites reinforced with niobium and/or carbon nanotubes fabricated by spark plasma sintering. Acta Materialia, 2012, 60, 622-632.	7.9	65

#	Article	IF	CITATIONS
289	Hydrogen-induced intergranular failure in nickel revisited. Acta Materialia, 2012, 60, 2739-2745.	7.9	282
290	Characterizing Threeâ€Dimensional Textile Ceramic Composites Using Synchrotron <scp>X</scp> â€Ray Microâ€Computedâ€Tomography. Journal of the American Ceramic Society, 2012, 95, 392-402.	3.8	128
291	Experimental Analysis of the Elastic–Plastic Transition During Nanoindentation of Single Crystal Alpha‧ilicon Nitride. Journal of the American Ceramic Society, 2012, 95, 2113-2115.	3.8	15
292	Sidewall Adhesion and Sliding Contact Behavior of Polycrystalline Silicon Microdevices Operated in High Vacuum. Journal of Microelectromechanical Systems, 2012, 21, 359-369.	2.5	12
293	Changes to the cell, tissue and architecture levels in cranial suture synostosis reveal a problem of timing in bone development. , 2012, 24, 441-458.		19
294	The conflicts between strength and toughness. Nature Materials, 2011, 10, 817-822.	27.5	2,543
295	A damage-tolerant glass. Nature Materials, 2011, 10, 123-128.	27.5	562
296	Impact of thermomechanical texture on the superelastic response of Nitinol implants. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1431-1439.	3.1	28
297	Effect of aging on the transverse toughness of human cortical bone: Evaluation by R-curves. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 1504-1513.	3.1	72
298	Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials, 2011, 32, 8892-8904.	11.4	250
299	Changes in cortical bone response to high-fat diet from adolescence to adulthood in mice. Osteoporosis International, 2011, 22, 2283-2293.	3.1	76
300	Differential maintenance of cortical and cancellous bone strength following discontinuation of bone-active agents. Journal of Bone and Mineral Research, 2011, 26, 569-581.	2.8	15
301	Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Materialia, 2011, 59, 1141-1149.	7.9	53
302	An equivalent strain/Coffin–Manson approach to multiaxial fatigue and life prediction in superelastic Nitinol medical devices. Biomaterials, 2011, 32, 4987-4993.	11.4	92
303	Age-related changes in the plasticity and toughness of human cortical bone at multiple length scales. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14416-14421.	7.1	325
304	Scaling of strength and ductility in bioinspired brick and mortar composites. Applied Physics Letters, 2010, 97, .	3.3	33
305	The significance of crack-resistance curves to the mixed-mode fracture toughness of human cortical bone. Biomaterials, 2010, 31, 5297-5305.	11.4	97
306	Wear mechanisms and friction parameters for sliding wear of micron-scale polysilicon sidewalls. Sensors and Actuators A: Physical, 2010, 163, 373-382.	4.1	16

#	Article	IF	CITATIONS
307	Microindentation for in vivo measurement of bone tissue mechanical properties in humans. Journal of Bone and Mineral Research, 2010, 25, 1877-1885.	2.8	237
308	The effects of cubic stiffness on fatigue characterization resonator performance. Sensors and Actuators A: Physical, 2010, 157, 228-234.	4.1	10
309	Mechanical properties of Si3N4–Al2O3 FGM joints with 15 layers for high-temperature applications. Journal of the European Ceramic Society, 2010, 30, 1743-1749.	5.7	11
310	A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel. Journal of the Mechanics and Physics of Solids, 2010, 58, 206-226.	4.8	361
311	Atomic-scale imaging and the effect of yttrium on the fracture toughness of silicon carbide ceramics. Acta Materialia, 2010, 58, 2999-3005.	7.9	24
312	Mechanistic aspects of the fracture toughness of elk antler bone. Acta Biomaterialia, 2010, 6, 1505-1514.	8.3	148
313	Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell, 2010, 9, 1065-1075.	6.7	241
314	Tissueâ€specific calibration of extracellular matrix material properties by transforming growth factorâ€Î² and Runx2 in bone is required for hearing. EMBO Reports, 2010, 11, 765-771.	4.5	37
315	How does human bone resist fracture?. Annals of the New York Academy of Sciences, 2010, 1192, 72-80.	3.8	43
316	A novel biomimetic approach to the design of high-performance ceramic–metal composites. Journal of the Royal Society Interface, 2010, 7, 741-753.	3.4	247
317	3D x-ray microprobe investigation of local dislocation densities and elastic strain gradients in a NiAl-Mo composite and exposed Mo micropillars as a function of prestrain. Journal of Materials Research, 2010, 25, 199-206.	2.6	18
318	On the Mechanistic Origins of Toughness in Bone. Annual Review of Materials Research, 2010, 40, 25-53.	9.3	560
319	Reduced size-independent mechanical properties of cortical bone in high-fat diet-induced obesity. Bone, 2010, 46, 217-225.	2.9	90
320	Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats. Bone, 2010, 46, 1267-1274.	2.9	38
321	Osteopontin deficiency increases bone fragility but preserves bone mass. Bone, 2010, 46, 1564-1573.	2.9	169
322	On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone, 2010, 46, 1475-1485.	2.9	171
323	Directional recrystallization and microstructures of an Fe–6.5wt%Si alloy. Journal of Materials Research, 2009, 24, 2654-2660.	2.6	19
324	Fracture toughness and crack-resistance curve behavior in metallic glass-matrix composites. Applied Physics Letters, 2009, 94, .	3.3	64

#	Article	IF	CITATIONS
325	Weakening of dentin from cracks resulting from laser irradiation. Dental Materials, 2009, 25, 520-525.	3.5	40
326	On the Fracture Toughness of Advanced Materials. Advanced Materials, 2009, 21, 2103-2110.	21.0	679
327	Mixed-mode fracture of human cortical bone. Biomaterials, 2009, 30, 5877-5884.	11.4	128
328	Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 384-395.	3.1	193
329	Designing highly toughened hybrid composites through nature-inspired hierarchical complexity. Acta Materialia, 2009, 57, 2919-2932.	7.9	278
330	Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials. Acta Materialia, 2009, 57, 4148-4157.	7.9	373
331	Prolonged Treatments With Antiresorptive Agents and PTH Have Different Effects on Bone Strength and the Degree of Mineralization in Old Estrogen-Deficient Osteoporotic Rats. Journal of Bone and Mineral Research, 2009, 24, 209-220.	2.8	32
332	On the origins of fracture resistance and its biological degradation in human bone. Bone, 2009, 44, S33.	2.9	0
333	Solution to the problem of the poor cyclic fatigue resistance of bulk metallic glasses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4986-4991.	7.1	84
334	Plasticity and toughness in bone. Physics Today, 2009, 62, 41-47.	0.3	281
335	Tribological behavior of micron-scale polycrystalline silicon structural films in ambient air. Proceedings of SPIE, 2009, , .	0.8	0
336	Pharmacologic Inhibition of the TGF-β Type I Receptor Kinase Has Anabolic and Anti-Catabolic Effects on Bone. PLoS ONE, 2009, 4, e5275.	2.5	163
337	Fatigue of mineralized tissues: Cortical bone and dentin. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 3-17.	3.1	80
338	Comments on "Measurement of the microstructural fracture toughness of cortical bone using indentation fracture― Journal of Biomechanics, 2008, 41, 1379-1380.	2.1	19
339	Aging and fracture of human cortical bone and tooth dentin. Jom, 2008, 60, 33-38.	1.9	85
340	A fracture-mechanics-based approach to fracture control in biomedical devices manufactured from superelastic Nitinol tube. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 84B, 26-33.	3.4	58
341	Glucocorticoidâ€induced bone loss in mice can be reversed by the actions of parathyroid hormone and risedronate on different pathways for bone formation and mineralization. Arthritis and Rheumatism, 2008, 58, 3485-3497.	6.7	111
342	Effect of post-release sidewall morphology on the fracture and fatigue properties of polycrystalline silicon structural films. Sensors and Actuators A: Physical, 2008, 147, 553-560.	4.1	28

#	Article	IF	CITATIONS
343	Editorial. Journal of the Mechanical Behavior of Biomedical Materials, 2008, 1, 207-207.	3.1	1
344	On the toughening of brittle materials by grain bridging: Promoting intergranular fracture through grain angle, strength, and toughness. Journal of the Mechanics and Physics of Solids, 2008, 56, 2381-2400.	4.8	53
345	Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 2008, 4, 1288-1296.	8.3	113
346	The effect of aging on crack-growth resistance and toughening mechanisms in human dentin. Biomaterials, 2008, 29, 1318-1328.	11.4	121
347	In situ bend testing of niobium-reinforced alumina nanocomposites with and without single-walled carbon nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 256-260.	5.6	8
348	Effect of microstructure on the fatigue of hot-rolled and cold-drawn NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 486, 389-403.	5.6	129
349	The Utility of <i>R</i> â€Curves for Understanding Fracture Toughnessâ€6trength Relations in Bridging Ceramics. Journal of the American Ceramic Society, 2008, 91, 1986-1994.	3.8	77
350	The true toughness of human cortical bone measured with realistically short cracks. Nature Materials, 2008, 7, 672-677.	27.5	453
351	Fatigue of dentin–composite interfaces with four-point bend. Dental Materials, 2008, 24, 799-803.	3.5	37
352	Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon. Scripta Materialia, 2008, 59, 931-935.	5.2	41
353	Tough, Bio-Inspired Hybrid Materials. Science, 2008, 322, 1516-1520.	12.6	1,531
354	Measurement of the toughness of bone: A tutorial with special reference to small animal studies. Bone, 2008, 43, 798-812.	2.9	180
355	Micron-Scale Friction and Sliding Wear of Polycrystalline Silicon Thin Structural Films in Ambient Air. Journal of Microelectromechanical Systems, 2008, 17, 1144-1154.	2.5	46
356	Atomic-Resolution Imaging of the Nanoscale Origin of Toughness in Rare-Earth Doped SiC. Nano Letters, 2008, 8, 2935-2939.	9.1	24
357	The Quest for Stronger, Tougher Materials. Science, 2008, 320, 448-448.	12.6	29
358	Elastic constants and tensile properties ofAl2OCby density functional calculations. Physical Review B, 2007, 75, .	3.2	19
359	Very high-cycle fatigue failure in micron-scale polycrystalline silicon films: Effects of environment and surface oxide thickness. Journal of Applied Physics, 2007, 101, 013515.	2.5	60
360	Analysis of the material properties of early chondrogenic differentiated adipose-derived stromal cells (ASC) using an in vitro three-dimensional micromass culture system. Biochemical and Biophysical Research Communications, 2007, 359, 311-316.	2.1	57

#	Article	IF	CITATIONS
361	The degree of bone mineralization is maintained with single intravenous bisphosphonates in aged estrogen-deficient rats and is a strong predictor of bone strength. Bone, 2007, 41, 804-812.	2.9	45
362	On the physics of moisture-induced cracking in metal-glass (copper-silica) interfaces. Journal of Applied Physics, 2007, 102, 053516.	2.5	11
363	Atomic-scale observation of the grain-boundary structure of Yb-doped and heat-treated silicon nitride ceramics. Applied Physics Letters, 2007, 91, 141906.	3.3	4
364	The aminobisphosphonate risedronate preserves localized mineral and material properties of bone in the presence of glucocorticoids. Arthritis and Rheumatism, 2007, 56, 3726-3737.	6.7	34
365	Understanding the Deformation and Fracture of Nitinol Endovascular Stents Using In Situ Synchrotron X-Ray Microdiffraction. Advanced Materials, 2007, 19, 1183-1186.	21.0	36
366	Fatigue-crack growth properties of thin-walled superelastic austenitic Nitinol tube for endovascular stents. Journal of Biomedical Materials Research - Part A, 2007, 81A, 685-691.	4.0	31
367	An electron microscopy study of wear in polysilicon microelectromechanical systems in ambient air. Thin Solid Films, 2007, 515, 3259-3266.	1.8	37
368	High-cycle fatigue of nickel-base superalloy René 104 (ME3): Interaction of microstructurally small cracks with grain boundaries of known character. Acta Materialia, 2007, 55, 3155-3167.	7.9	102
369	Evolution of crack-tip transformation zones in superelastic Nitinol subjected to in situ fatigue: A fracture mechanics and synchrotron X-ray microdiffraction analysis. Acta Materialia, 2007, 55, 6198-6207.	7.9	153
370	A micromechanical basis for partitioning the evolution of grain bridging in brittle materials. Journal of the Mechanics and Physics of Solids, 2007, 55, 719-743.	4.8	39
371	A preservation study of carbon nanotubes in alumina-based nanocomposites via Raman spectroscopy and nuclear magnetic resonance. Applied Physics A: Materials Science and Processing, 2007, 89, 651-654.	2.3	33
372	In vitro fatigue–crack growth and fracture toughness behavior of thin-walled superelastic Nitinol tube for endovascular stents: A basis for defining the effect of crack-like defects. Biomaterials, 2007, 28, 700-709.	11.4	143
373	Stress–corrosion crack growth of Si–Na–K–Mg–Ca–P–O bioactive glasses in simulated human physiological environment. Biomaterials, 2007, 28, 4901-4911.	11.4	25
374	Canine Cranial Reconstruction Using Autologous Bone Marrow Stromal Cells. American Journal of Pathology, 2006, 168, 542-550.	3.8	76
375	Re-evaluating the toughness of human cortical bone. Bone, 2006, 38, 878-887.	2.9	82
376	Quantitative Analysis of Fracture Surface Morphologies in a Zr-Ti-Ni-Cu-Be Bulk Metallic Glass. , 2006, , 40-45.		0
377	Direct Mechanical Measurement of the Tensile Strength and Elastic Modulus of Multiwalled Carbon Nanotubes. Microscopy and Microanalysis, 2006, 12, 934-935.	0.4	16
378	Isothermal Fatigue Behavior and Residual Stress States of Mechanically Surface Treated Ti-6Al-4V: Laser Shock Peening vs. Deep Rolling. , 2006, , 447-453.		2

#	Article	IF	CITATIONS
379	High Temperature Fatigue of Mechanically Surface Treated Materials. , 2006, , 483-489.		3
380	Fracture and Ageing in Bone: Toughness and Structural Characterization. Strain, 2006, 42, 225-232.	2.4	39
381	Stress-corrosion fatigue–crack growth in a Zr-based bulk amorphous metal. Acta Materialia, 2006, 54, 1785-1794.	7.9	47
382	Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Materials Science and Engineering C, 2006, 26, 1251-1260.	7.3	128
383	Propagation of surface fatigue cracks in human cortical bone. Journal of Biomechanics, 2006, 39, 968-972.	2.1	29
384	On the Increasing Fragility of Human Teeth With Age: A Deep-UV Resonance Raman Study. Journal of Bone and Mineral Research, 2006, 21, 1879-1887.	2.8	47
385	Interfacial structure in silicon nitride sintered with lanthanide oxide. Journal of Materials Science, 2006, 41, 4405-4412.	3.7	22
386	Effect of product form and heat treatment on the crystallographic texture of austenitic Nitinol. Journal of Materials Science, 2006, 41, 621-630.	3.7	32
387	Fracture length scales in human cortical bone: The necessity of nonlinear fracture models. Biomaterials, 2006, 27, 2095-2113.	11.4	126
388	Fatigue and life prediction for cobalt-chromium stents: A fracture mechanics analysis. Biomaterials, 2006, 27, 1988-2000.	11.4	197
389	Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation. Materials Science and Engineering C, 2006, 26, 1289-1295.	7.3	173
390	Kitagawa-Takahashi diagrams define the limiting conditions for cyclic fatigue failure in human dentin. Journal of Biomedical Materials Research - Part A, 2006, 79A, 747-751.	4.0	24
391	Role of Alcohol in the Fracture Resistance of Teeth. Journal of Dental Research, 2006, 85, 1022-1026.	5.2	43
392	Fracture, aging, and disease in bone. Journal of Materials Research, 2006, 21, 1878-1892.	2.6	62
393	Synthesis, Microstructure, and Mechanical Properties of FeCo-VC Composites. Materials Research Society Symposia Proceedings, 2006, 980, 14.	0.1	0
394	Atomic-resolution observations of semicrystalline intergranular thin films in silicon nitride. Applied Physics Letters, 2006, 88, 041919.	3.3	21
395	Fracture, Aging and Disease in Bone and Teeth. , 2006, , 23-24.		1
396	Fracture in human cortical bone: local fracture criteria and toughening mechanisms. Journal of Biomechanics, 2005, 38, 1517-1525.	2.1	224

#	Article	IF	CITATIONS
397	Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading. Acta Materialia, 2005, 53, 2595-2605.	7.9	52
398	Mechanistic aspects of in vitro fatigue-crack growth in dentin. Biomaterials, 2005, 26, 1195-1204.	11.4	64
399	Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth. Biomaterials, 2005, 26, 2183-2195.	11.4	56
400	A fracture mechanics and mechanistic approach to the failure of cortical bone. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28, 345-371.	3.4	116
401	The dentin–enamel junction and the fracture of human teeth. Nature Materials, 2005, 4, 229-232.	27.5	381
402	On the Effect of Local Grain-Boundary Chemistry on the Macroscopic Mechanical Properties of a High-Purity Y2O3-Al2O3-Containing Silicon Nitride Ceramic: Role of Oxygen. Journal of the American Ceramic Society, 2005, 88, 1900-1908.	3.8	14
403	Effects of Moisture on Grainâ€Boundary Strength, Fracture, and Fatigue Properties of Alumina. Journal of the American Ceramic Society, 2005, 88, 2236-2245.	3.8	35
404	Crystallographic texture for tube and plate of the superelastic/shape-memory alloy Nitinol used for endovascular stents. Journal of Biomedical Materials Research - Part A, 2005, 72A, 190-199.	4.0	38
405	Simple and accurate fracture toughness testing methods for pyrolytic carbon/graphite composites used in heart-valve prostheses. Journal of Biomedical Materials Research - Part A, 2005, 74A, 461-464.	4.0	22
406	Ultrastructural examination of dentin using focused ion-beam cross-sectioning and transmission electron microscopy. Micron, 2005, 36, 672-680.	2.2	97
407	Effects of polar solvents on the fracture resistance of dentin: role of water hydration. Acta Biomaterialia, 2005, 1, 31-43.	8.3	87
408	Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials, 2005, 26, 217-231.	11.4	288
409	Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties. Biomaterials, 2005, 26, 3363-3376.	11.4	201
410	A transmission electron microscopy study of mineralization in age-induced transparent dentin. Biomaterials, 2005, 26, 7650-7660.	11.4	104
411	High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: Role of grain-boundary engineering. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 3325-3333.	2.2	120
412	Ambient- to elevated-temperature fracture and fatigue properties of Mo-Si-B alloys: Role of microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 2393-2402.	2.2	54
413	Optimization of Mo-Si-B intermetallic alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2005, 36, 525-531.	2.2	174
414	Incomplete self-similarity and fatigue-crack growth. International Journal of Fracture, 2005, 132, 197-203.	2.2	69

#	Article	IF	CITATIONS
415	Dentin Erosion Simulation by Cantilever Beam Fatigue and pH Change. Journal of Dental Research, 2005, 84, 371-375.	5.2	35
416	Deep-ultraviolet Raman spectroscopy study of the effect of aging on human cortical bone. Journal of Biomedical Optics, 2005, 10, 034012.	2.6	106
417	Ab initiostructural energetics of $\hat{l}^2 \hat{a}^3$ Si3N4surfaces. Physical Review B, 2005, 72, .	3.2	30
418	Fatigue failure in thin-film polycrystalline silicon is due to subcritical cracking within the oxide layer. Applied Physics Letters, 2005, 86, 041914.	3.3	47
419	Effect of Age-Induced Transparency on the Mechanical Properties of Human Dentin. Materials Research Society Symposia Proceedings, 2005, 874, 1.	0.1	0
420	TGF-Â regulates the mechanical properties and composition of bone matrix. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 18813-18818.	7.1	193
421	On the improvement of the ductility of molybdenum by spinel (MgAl ₂ O ₄) particles. International Journal of Materials Research, 2005, 96, 632-637.	0.8	9
422	Nanocrystal-Powered Nanomotor. Nano Letters, 2005, 5, 1730-1733.	9.1	65
423	On the Role of Grain-Boundary Films in Optimizing the Mechanical Properties of Silicon Carbide Ceramics. Materials Research Society Symposia Proceedings, 2004, 818, 377.	0.1	2
424	Utilizing On-Chip Testing and Electron Microscopy to Study Fatigue and Wear in Polysilicon Structural Films. Materials Research Society Symposia Proceedings, 2004, 821, 1.	0.1	4
425	Role of Microstructure in Promoting Fracture and Fatigue Resistance in Mo-Si-B Alloys. Materials Research Society Symposia Proceedings, 2004, 842, 132.	0.1	1
426	On the Effect of Local Grain-Boundary Chemistry on the Macroscopic Mechanical Properties of a High Purity Y2O3-Al2O3-Containing Silicon Nitride Ceramic. Materials Research Society Symposia Proceedings, 2004, 839, 48.	0.1	0
427	Mechanistic Aspects of Fracture of Human Cortical Bone. Materials Research Society Symposia Proceedings, 2004, 823, W8.2.1.	0.1	2
428	On the <i>in vitro</i> Fatigue Behavior of Human Dentin: Effect of Mean Stress. Journal of Dental Research, 2004, 83, 211-215.	5.2	68
429	Effects of Aging on the Toughness of Human Cortical Bone: A Study from Nano to Macro Size-Scales. Materials Research Society Symposia Proceedings, 2004, 844, 1.	0.1	0
430	A Spatially-resolved Synchrotron Diffraction Method for Evaluating Impact-induced Residual Stresses. Journal of Neutron Research, 2004, 12, 75-80.	1.1	1
431	High-Resolution Interface Atomic Structure Analysis in Silicon Nitride Ceramics. Materials Research Society Symposia Proceedings, 2004, 839, 24.	0.1	1
432	Crack‣ize Effects on Cyclic and Monotonic Crack Growth in Polycrystalline Alumina: Quantification of the Role of Grain Bridging. Journal of the American Ceramic Society, 2004, 87, 93-103.	3.8	35

#	Article	IF	CITATIONS
433	Carbon nanotubes as nanoscale mass conveyors. Nature, 2004, 428, 924-927.	27.8	291
434	Fracture and fatigue resistance of Mo–Si–B alloys for ultrahigh-temperature structural applications. Scripta Materialia, 2004, 50, 459-464.	5.2	90
435	Characteristic dimensions and the micro-mechanisms of fracture and fatigue in `nano' and `bio' materials. International Journal of Fracture, 2004, 128, 1-15.	2.2	40
436	Fatigue of polycrystalline silicon for microelectromechanical system applications: crack growth and stability under resonant loading conditions. Mechanics of Materials, 2004, 36, 13-33.	3.2	83
437	Effects of plastic constraint on the cyclic and static fatigue behavior of metal/ceramic layered structures. Mechanics of Materials, 2004, 36, 57-72.	3.2	41
438	Constitutive modelling and numerical simulation of multivariant phase transformation in superelastic shape-memory alloys. International Journal for Numerical Methods in Engineering, 2004, 60, 429-460.	2.8	48
439	On the electronic and mechanical instabilities in Ni50.9Ti49.1. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 378, 130-137.	5.6	8
440	Interface Structure and Atomic Bonding Characteristics in Silicon Nitride Ceramics. Science, 2004, 306, 1768-1770.	12.6	216
441	On the origin of the toughness of mineralized tissue: microcracking or crack bridging?. Bone, 2004, 34, 790-798.	2.9	218
442	Effect of aging on the toughness of human cortical bone: evaluation by R-curves. Bone, 2004, 35, 1240-1246.	2.9	210
443	Using the Electron Microscope to Explore Reliability in Microelectromechanical Systems and Nanostructured Materials. Microscopy and Microanalysis, 2004, 10, 354-355.	0.4	0
444	Failure by Fracture and Fatigue in "Nano" and "Bio" Materials. JSME International Journal Series A-Solid Mechanics and Material Engineering, 2004, 47, 238-251.	0.4	5
445	High-cycle fatigue of micron-scale polycrystalline silicon films: fracture mechanics analyses of the role of the silica/silicon interface. International Journal of Fracture, 2003, 119/120, 449-474.	2.2	43
446	On the fracture and fatigue properties of Mo-Mo3Si-Mo5SiB2 refractory intermetallic alloys at ambient to elevated temperatures (25 ŰC to 1300 ŰC). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 225-239.	2.2	72
447	An in situ transmission electron microscope study of the thermal stability of near-surface microstructures induced by deep rolling and laser-shock peening. Scripta Materialia, 2003, 48, 1593-1598.	5.2	103
448	On the fracture of human dentin: Is it stress- or strain-controlled?. Journal of Biomedical Materials Research Part B, 2003, 67A, 484-495.	3.1	79
449	In vitro fracture toughness of human dentin. Journal of Biomedical Materials Research Part B, 2003, 66A, 1-9.	3.1	78
450	In vitro fatigue behavior of human dentin with implications for life prediction. Journal of Biomedical Materials Research Part B, 2003, 66A, 10-20.	3.1	90

#	Article	IF	CITATIONS
451	Verhalten laserschockverfestigter und festgewalzter Randschichten der Ti-Legierung Ti-6Al-4V bei schwingender Beanspruchung unter erhĶhten Temperaturen. Materialwissenschaft Und Werkstofftechnik, 2003, 34, 529-541.	0.9	7
452	Ambient to high-temperature fracture toughness and cyclic fatigue behavior in Al-containing silicon carbide ceramics. Acta Materialia, 2003, 51, 6477-6491.	7.9	43
453	Probing structural phase transitions of crystalline C60 via resistivity measurements of metal film overlayers. Solid State Communications, 2003, 128, 359-363.	1.9	9
454	Effect of orientation on the in vitro fracture toughness of dentin: the role of toughening mechanisms. Biomaterials, 2003, 24, 3955-3968.	11.4	226
455	Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: effect of hydration. Biomaterials, 2003, 24, 5209-5221.	11.4	182
456	An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading. Mechanics of Materials, 2003, 35, 969-986.	3.2	155
457	Mechanical relaxation of localized residual stresses associated with foreign object damage. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 349, 48-58.	5.6	55
458	On the influence of mechanical surface treatments—deep rolling and laser shock peening—on the fatigue behavior of Ti–6Al–4V at ambient and elevated temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 355, 216-230.	5.6	428
459	Abrasive Wear Behavior of Heatâ€Treated ABCâ€Silicon Carbide. Journal of the American Ceramic Society, 2003, 86, 1370-1378.	3.8	23
460	Determining the Toughness of Ceramics from Vickers Indentations Using the Crackâ€Opening Displacements: An Experimental Study. Journal of the American Ceramic Society, 2003, 86, 1433-1436.	3.8	73
461	Atomic Resolution Transmission Electron Microscopy of the Intergranular Structure of a Y ₂ O ₃ â€Containing Silicon Nitride Ceramic. Journal of the American Ceramic Society, 2003, 86, 1777-1785.	3.8	47
462	Mechanistic fracture criteria for the failure of human cortical bone. Nature Materials, 2003, 2, 164-168.	27.5	642
463	MICROSTRUCTURE AND PROPERTIES OF IN SITU TOUGHENED SILICON CARBIDE. , 2003, , 145-156.		1
464	Nanowicks: Nanotubes as Tracks for Mass Transfer. AIP Conference Proceedings, 2003, , .	0.4	4
465	Fatigue Degradation of Nanometer-Scale Silicon Dioxide Reaction Layers on Silicon Structural Films. Materials Research Society Symposia Proceedings, 2003, 778, 721.	0.1	0
466	Fatigue of Brittle Materials. , 2003, , 359-388.		2
467	Fatigue of Small-volume Structures: Silicon Films. , 2003, , 467-487.		0
468	PL-2(PL2W0466) On the Fatigue and Fracture of "Nano" and "Bio" Materials. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003, 4.	0.0	0

#	Article	IF	CITATIONS
469	PL2W0466 On the fatigue and fracture of "nano" and "bio" materials. The Abstracts of ATEM International Conference on Advanced Technology in Experimental Mechanics Asian Conference on Experimental Mechanics, 2003, 2003.2, _PL2W0466PL2W0466	0.0	0
470	Errata to "High-cycle fatigue of single-crystal silicon thin films". Journal of Microelectromechanical Systems, 2002, 11, 91-91.	2.5	1
471	Effects of Mechanical Surface Treatment on Fatigue Failure in Ti-6Al-4V: Role of Residual Stresses and Foreign-Object Damage. Materials Science Forum, 2002, 404-407, 457-462.	0.3	13
472	Interfacial Effects on the Premature Failure of Polycrystalline Silicon Structural Films. Materials Research Society Symposia Proceedings, 2002, 741, 351.	0.1	0
473	Effects of the Amorphous Oxide Intergranular Layer Structure and Bonding on the Fracture Toughness of a High Purity Silicon Nitride. Materials Research Society Symposia Proceedings, 2002, 751, 1.	0.1	1
474	Optimization of Mo-Si-B Intermetallics. Materials Research Society Symposia Proceedings, 2002, 753, 1.	0.1	0
475	Mechanism of fatigue in micron-scale films of polycrystalline silicon for microelectromechanical systems. Applied Physics Letters, 2002, 80, 1532-1534.	3.3	96
476	Surface Engineering of Polycrystalline Silicon Microelectromechanical Systems for Fatigue Resistance. Materials Research Society Symposia Proceedings, 2002, 729, 211.	0.1	0
477	Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 899-918.	2.2	240
478	Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 334, 173-178.	5.6	951
479	Effects of microstructure on mixed-mode, high-cycle fatigue crack-growth thresholds in Ti-6Al-4V alloy. Fatigue and Fracture of Engineering Materials and Structures, 2002, 25, 587-606.	3.4	16
480	A physically-based abrasive wear model for composite materials. Wear, 2002, 252, 322-331.	3.1	132
481	Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti–6Al–4V: Role of small cracks. International Journal of Fatigue, 2002, 24, 1047-1062.	5.7	47
482	Fracture and Fatigue Behavior at Ambient and Elevated Temperatures of Alumina Bonded with Copper/Niobium/Copper Interlayers. Journal of the American Ceramic Society, 2002, 85, 2531-2541.	3.8	17
483	Imaging of the crystal structure of silicon nitride at 0.8 Ãngström resolution1Work supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy under Contract No. DE-AC03-76SF00098.1. Acta Materialia, 2002, 50, 565-574.	7.9	35
484	A reaction-layer mechanism for the delayed failure of micron-scale polycrystalline silicon structural films subjected to high-cycle fatigue loading. Acta Materialia, 2002, 50, 3579-3595.	7.9	189
485	On the application of the Kitagawa–Takahashi diagram to foreign-object damage and high-cycle fatigue. Engineering Fracture Mechanics, 2002, 69, 1425-1446.	4.3	86
486	Statistical fracture modeling: crack path and fracture criteria with application to homogeneous and functionally graded materials. Engineering Fracture Mechanics, 2002, 69, 1521-1555.	4.3	43

#	Article	IF	CITATIONS
487	Influence of microstructure on high-cycle fatigue of Ti-6Al-4V: Bimodal vs. lamellar structures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2002, 33, 899-918.	2.2	51
488	High-cycle fatigue of single-crystal silicon thin films. Journal of Microelectromechanical Systems, 2001, 10, 593-600.	2.5	200
489	Ambient to high temperature fracture toughness and fatigue-crack propagation behavior in a Mo–12Si–8.5B (at.%) intermetallic. Intermetallics, 2001, 9, 319-329.	3.9	120
490	Electron Microscopy in Optimizing Microstructure and Mechanical Properties of Hot-Pressed Silicon Carbide. Microscopy and Microanalysis, 2001, 7, 422-423.	0.4	0
491	On the Mechanism of Fatigue in Micron-Scale Structural Films of Polycrystalline Silicon. Materials Research Society Symposia Proceedings, 2001, 687, 1.	0.1	1
492	On The Mechanism of Fatigue in Micron-Scale Structural Films of Polycrystalline Silicon. Materials Research Society Symposia Proceedings, 2001, 697, 671.	0.1	0
493	Mixed-mode, high-cycle fatigue-crack-growth thresholds in Ti-6Al-4V: Role of bimodal and lamellar microstructures. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 497-503.	2.2	14
494	Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 731-743.	2.2	40
495	Fatigue-crack growth behavior in the superelastic and shape-memory alloy nitinol. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 731-743.	2.2	197
496	The residual stress state due to a spherical hard-body impact. Mechanics of Materials, 2001, 33, 441-454.	3.2	125
497	Foreign-object damage and high-cycle fatigue: role of microstructure in Ti–6Al–4V. International Journal of Fatigue, 2001, 23, 413-421.	5.7	34
498	Foreign-object damage and high-cycle fatigue of Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 597-601.	5.6	35
499	High-cycle fatigue and durability of polycrystalline silicon thin films in ambient air. Sensors and Actuators A: Physical, 2001, 94, 177-188.	4.1	157
500	Effect of load ratio and maximum stress intensity on the fatigue threshold in Ti–6Al–4V. Engineering Fracture Mechanics, 2001, 68, 129-147.	4.3	191
501	Finite crack kinking and T-stresses in functionally graded materials. International Journal of Solids and Structures, 2001, 38, 5545-5563.	2.7	71
502	Title is missing!. International Journal of Fracture, 2001, 107, 99-115.	2.2	17
503	A comparison of the mechanisms of fatigue-crack propagation behavior in a Zr-based bulk amorphous metal in air and an aqueous chloride solution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 317, 145-152.	5.6	37
504	Cyclic Fatigue–Crack Propagation Behavior in Silicon Carbide: Long―and Smallâ€Crack Behavior. Journal of the American Ceramic Society, 2001, 84, 551-554.	3.8	10

#	Article	IF	CITATIONS
505	Cyclic Fatigueâ€Crack Growth and Fracture Properties in Ti ₃ SiC ₂ Ceramics at Elevated Temperatures. Journal of the American Ceramic Society, 2001, 84, 2914-2920.	3.8	68
506	Structure of boron nitride nanotubules. Applied Physics Letters, 2001, 78, 2772-2774.	3.3	71
507	Time Dependent Debonding of Aluminum/Alumina Interfaces under Cyclic and Static Loading. Materials Research Society Symposia Proceedings, 2000, 654, 4101.	0.1	0
508	High-Cycle Fatigue of Polycrystalline Silicon Thin Films in Laboratory Air. Materials Research Society Symposia Proceedings, 2000, 657, 581.	0.1	10
509	Cyclic fatigue-crack propagation in sapphire in air and simulated physiological environments. Journal of Biomedical Materials Research Part B, 2000, 52, 488-491.	3.1	21
510	Influence of foreign-object damage on crack initiation and early crack growth during high-cycle fatigue of Ti–6Al–4V. Engineering Fracture Mechanics, 2000, 67, 193-207.	4.3	115
511	Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti–6Al–4V. Engineering Fracture Mechanics, 2000, 67, 209-227.	4.3	43
512	Mixed-mode, high-cycle fatigue-crack growth thresholds in Ti–6Al–4V. Engineering Fracture Mechanics, 2000, 67, 229-249.	4.3	32
513	Role of the grain-boundary phase on the elevated-temperature strength, toughness, fatigue and creep resistance of silicon carbide sintered with Al, B and C. Acta Materialia, 2000, 48, 4599-4608.	7.9	108
514	High-temperature cyclic fatigue-crack growth behavior in an in situ toughened silicon carbide. Acta Materialia, 2000, 48, 659-674.	7.9	41
515	An approximate method for residual stress calculation in functionally graded materials. Mechanics of Materials, 2000, 32, 85-97.	3.2	47
516	Anomalous cyclic fatigue-crack propagation behavior of small cracks in monolithic, grain-bridging ceramics. Ceramics International, 2000, 26, 721-725.	4.8	12
517	Fatigue-crack growth and fracture properties of coarse and fine-grained Ti3SiC2. Scripta Materialia, 2000, 42, 761-767.	5.2	163
518	Mechanics and mechanisms of fatigue damage and crack growth in advanced materials. International Journal of Solids and Structures, 2000, 37, 311-329.	2.7	96
519	Role of foreign-object damage on thresholds for high-cycle fatigue in Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1571-1583.	2.2	65
520	High-temperature fracture and fatigue-crack growth behavior of an XD gamma-based titanium aluminide intermetallic alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1413-1423.	2.2	10
521	Stereophotogrammetric Investigation of Overload and Cyclic Fatigue Fracture Surface Morphologies in a Zr–Ti–Ni–Cu–Be Bulk Metallic Glass. Journal of Materials Research, 2000, 15, 898-903.	2.6	30
522	Fracture, fatigue and environmentally-assisted failure of a Zr-based bulk amorphous metal. Intermetallics, 2000, 8, 469-475.	3.9	42

#	Article	IF	CITATIONS
523	On the temperature dependence of the superelastic strength and the prediction of the theoretical uniaxial transformation strain in Nitinol. Philosophical Magazine A: Physics of Condensed Matter, Structure, Defects and Mechanical Properties, 2000, 80, 1759-1768.	0.6	50
524	Effects of Grainâ€Boundary Structure on the Strength, Toughness, and Cyclicâ€Fatigue Properties of a Monolithic Silicon Carbide. Journal of the American Ceramic Society, 2000, 83, 2079-2081.	3.8	42
525	In Situ Measurement of Fatigue Crack Growth Rates in a Silicon Carbide Ceramic at Elevated Temperatures Using a DC Potential System. Journal of Testing and Evaluation, 2000, 28, 236-241.	0.7	20
526	A Statistical RKR Fracture Model for the Brittle Fracture of Functionally Graded Materials. Materials Science Forum, 1999, 308-311, 957-962.	0.3	5
527	Thresholds for high-cycle fatigue in a turbine engine Ti–6Al–4V alloy. International Journal of Fatigue, 1999, 21, 653-662.	5.7	125
528	High frequency fatigue crack propagation behavior of a nickel-base turbine disk alloy. International Journal of Fatigue, 1999, 21, 725-731.	5.7	46
529	On the fatigue behavior of Î ³ -based titanium aluminides: role of small cracks. Acta Materialia, 1999, 47, 801-816.	7.9	64
530	High-cycle fatigue of Ti-6Al-4V. Fatigue and Fracture of Engineering Materials and Structures, 1999, 22, 621-631.	3.4	119
531	Effect of viscous grain bridging on cyclic fatigue-crack growth in monolithic ceramics at elevated temperatures. Acta Materialia, 1999, 47, 2809-2819.	7.9	19
532	Mechanisms of fatigue-crack propagation in ductile and brittle solids. International Journal of Fracture, 1999, 100, 55-83.	2.2	728
533	The effect of microstructure on fracture toughness and fatigue crack growth behavior in Î ³ -titanium aluminide based intermetallics. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 563-577.	2.2	81
534	Fatigue-crack propagation behavior of ductile/brittle laminated composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 633-642.	2.2	48
535	Mechanisms for fracture and fatigue-crack propagation in a bulk metallic glass. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30, 1739-1753.	2.2	225
536	Effect of aqueous environment on fatigue-crack propagation behavior in a Zr-based bulk amorphous metalâ^—. Scripta Materialia, 1999, 40, 1057-1061.	5.2	36
537	Mixed-mode fatigue-crack growth thresholds in Ti-6Al-4V at high frequency. Scripta Materialia, 1999, 41, 1067-1071.	5.2	7
538	Fatigue-crack propagation in Nitinol, a shape-memory and superelastic endovascular stent material. , 1999, 47, 301-308.		134
539	Flexor Tendon Repair Using a Stainless Steel External Splint. Journal of Hand Surgery, 1999, 24, 654-657.	0.8	10
540	Light emission during fracture of a Zr–Ti–Ni–Cu–Be bulk metallic glass. Applied Physics Letters, 1999, 74, 3809-3811.	3.3	94

#	Article	IF	CITATIONS
541	The importance of small fatigue cracks in advanced materials. , 1999, , 233-245.		1
542	On the Crack-Tip Blunting Model for Fatigue Crack Propagation in Ductile Materials. , 1999, , 552-564.		12
543	Small crack effects in ceramic materials. , 1999, , 283-288.		1
544	Transient fatigue-crack growth behavior following variable-amplitude loading in a monolithic silicon nitride ceramic. Engineering Fracture Mechanics, 1998, 60, 303-313.	4.3	8
545	Fatigue of a Zr-Ti-Cu-Ni-Be bulk amorphous metal: Stress/life and crack-growth behavior. Scripta Materialia, 1998, 38, 537-542.	5.2	148
546	Comparison of the Corrosion Behavior of a Bulk Amorphous Metal, Zr41.2Ti13.8Cu12.5Ni10Be22.5, with Its Crystallized Form. Scripta Materialia, 1998, 38, 1481-1485.	5.2	88
547	Fracture toughness and R-Curve behavior of laminated brittle-matrix composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2483-2496.	2.2	107
548	On the quantification of bridging tractions during subcritical crack growth under monotonic and cyclic fatigue loading in a grain-bridging silicon carbide ceramic11Work supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098 Acta Materialia, 1998, 46, 609-616.	7.9	42
549	High-temperature fracture and fatigue resistance of a ductile β-TiNb reinforced γ-TiAl intermetallic composite. Acta Materialia, 1998, 46, 4167-4180.	7.9	22
550	Flexor Tendon Repair Using a Stainless Steel Internal Anchor. Journal of Hand Surgery, 1998, 23, 37-40.	0.8	17
551	Fatigue-Crack Growth in the Superelastic Endovascular Stent Material Nitinol. Materials Research Society Symposia Proceedings, 1998, 550, 281.	0.1	4
552	Fatigue-Crack Propagation in Gamma-Based Titanium Aluminide Alloys at Large and Small Crack Sizes. Materials Research Society Symposia Proceedings, 1998, 552, 1.	0.1	4
553	Mechanism for Light Emission During Fracture of a Zr-Ti-Cu-Ni-Be Bulk Metallic Glass: Temperature Measurements in Air and Nitrogen. Materials Research Society Symposia Proceedings, 1998, 554, 191.	0.1	3
554	Fracture and Fatigue in a Zr-Based Bulk Metallic Glass. Materials Research Society Symposia Proceedings, 1998, 554, 343.	0.1	3
555	The Cubic — To — Hexagonal Transformation to Toughen Sic. , 1998, , 177-190.		6
556	Microstructural Effects on the Hardness, Elastic Modulus and Fracture Toughness of CVD Diamond. Materials Research Society Symposia Proceedings, 1997, 505, 611.	0.1	3
557	Fracture toughness and fatigue-crack propagation in a Zr–Ti–Ni–Cu–Be bulk metallic glass. Applied Physics Letters, 1997, 71, 476-478.	3.3	424
558	MECHANISMS OF CYCLIC FATIGUEâ€CRACK PROPAGATION IN A FINEâ€GRAINED ALUMINA CERAMIC: THE ROLE (CRACK CLOSURE. Fatigue and Fracture of Engineering Materials and Structures, 1997, 20, 1453-1466.	О <u></u>	29

#	Article	IF	CITATIONS
559	On the growth of small fatigue cracks in Î ³ -based titanium aluminides. Scripta Materialia, 1997, 37, 707-712.	5.2	33
560	On the anomalous temperature dependence of fatigue-crack growth in Î ³ -based titanium aluminides. Scripta Materialia, 1997, 37, 1797-1803.	5.2	22
561	Fatigue-crack growth of small cracks in a directionally-solidified nickel aluminide with molybdenum additions. Scripta Materialia, 1997, 38, 245-251.	5.2	3
562	Fatigue crack growth resistance in SiC particulate and whisker reinforced P/M 2124 aluminum matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 231, 170-182.	5.6	39
563	Laminated Nb/Nb3Al composites: effect of layer thickness on fatigue and fracture behavior. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 239-240, 393-398.	5.6	21
564	On the role of microstructure in fatigue-crack growth of Î ³ -based titanium aluminides. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1997, 239-240, 722-728.	5.6	16
565	Microstructural mechanisms of cyclic fatigue-crack propagation in grain-bridging ceramics. Ceramics International, 1997, 23, 413-418.	4.8	35
566	Limitations on the use of the mixed-mode delaminating beam test specimen: Effects of the size of the region of K-dominance. Mechanics of Materials, 1997, 25, 291-308.	3.2	64
567	Crackâ€Growth Resistanceâ€Curve Behavior in Silicon Carbide: Small versus Long Cracks. Journal of the American Ceramic Society, 1997, 80, 2253-2261.	3.8	65
568	Elastic Compliance of the Compact Tension Specimen Comprising Two Linear-Elastic Materials Bonded with a Thin Layer. Journal of Testing and Evaluation, 1997, 25, 28-35.	0.7	4
569	Fatigue of Ceramics and Intermetallics: Application to Damage Tolerance and Life Prediction in Cyclically-Loaded Brittle Materials. , 1997, , 377-403.		0
570	Phase transformations in an in situ Nb-reinforced Nb3Al intermetallic composite. Intermetallics, 1996, 4, 23-29.	3.9	18
571	Toughness and Subcritical Crack Growth in Nb/Nb3Al Layered Materials. Materials Research Society Symposia Proceedings, 1996, 434, 243.	0.1	8
572	Fracture and fatigue-crack growth behavior in ductile-phase toughened molybdenum disilicide: Effects of niobium wirevs particulate reinforcements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27, 3781-3792.	2.2	57
573	Cyclic fatigue and resistance-curve behavior of an in situ toughened silicon carbide with Al B C additions. Acta Materialia, 1996, 44, 3199-3214.	7.9	81
574	On the interaction of cracks with bimaterial interfaces. Materials Science, 1996, 32, 107-120.	0.9	6
575	Resistance-curve toughening in ductile/brittle layered structures: Behavior in Nb/Nb3Al laminates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1996, 216, 80-90.	5.6	53
576	Fracture and fatigue-crack growth along aluminum-alumina interfaces. Acta Materialia, 1996, 44, 4713-4728.	7.9	71

#	Article	IF	CITATIONS
577	In Situ Toughened Silicon Carbide with Al-B-C Additions. Journal of the American Ceramic Society, 1996, 79, 461-469.	3.8	199
578	Crack Propagation in Metal-Matrix Composites. II: Mechanisms of Fatigue-Crack Growth. , 1996, , 461-494.		1
579	Toughened Silicon Carbides for High-Temperature Use. , 1996, , 567-578.		Ο
580	Crack Propagation in Metal-Matrix Composites. I: Interaction of Cracks with Metal/Ceramic Interfaces. , 1996, , 445-460.		0
581	Fatigue and fracture of pyrolytic carbon: a damage- tolerant approach to structural integrity and life prediction in "ceramic" heart valve prostheses. Journal of Heart Valve Disease, 1996, 5 Suppl 1, S9-31.	0.5	5
582	Fracture, Fatigue and Indentation Behavior of Pyrolytic Carbon for Biomedical Applications. Materials Research Society Symposia Proceedings, 1995, 383, 229.	0.1	4
583	Fracture Toughness and Subcritical Crack Growth in CVD Diamond. Materials Research Society Symposia Proceedings, 1995, 383, 289.	0.1	6
584	Microstructural Development to Toughen Sic. Materials Research Society Symposia Proceedings, 1995, 410, 257.	0.1	3
585	Reply to Drs. Lankford and Sines. Journal of Biomedical Materials Research Part B, 1995, 29, 676-678.	3.1	0
586	Grain size effects on cyclic fatigue and crack-growth resistance behaviour of partially stabilized zirconia. Journal of Materials Science, 1995, 30, 3291-3299.	3.7	16
587	Cyclic fatigue in monolithic alumina: mechanisms for crack advance promoted by frictional wear of grain bridges. Journal of Materials Science, 1995, 30, 643-654.	3.7	59
588	Fatigue-crack propagation behavior in monolithic and composite ceramics and intermetallics. Materials Science, 1995, 30, 277-300.	0.9	1
589	Silicon Carbide Platelet/Silicon Carbide Composites. Journal of the American Ceramic Society, 1995, 78, 97-103.	3.8	33
590	Behavior of Cyclic Fatigue Cracks in Monolithic Silicon Nitride. Journal of the American Ceramic Society, 1995, 78, 2291-2300.	3.8	89
591	Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 192-193, 474-482.	5.6	55
592	Toughening mechanisms in ductile niobium-reinforced niobium aluminide (Nb/Nb3Al) in situ composites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995, 26, 2027-2033.	2.2	31
593	Fracture of synthetic diamond. Journal of Applied Physics, 1995, 78, 3083-3088.	2.5	65
594	High-temperature fatigue-crack growth behavior in a two-phase (γ + α2) TiAl intermetallic alloy. Scripta Metallurgica Et Materialia, 1995, 33, 459-465.	1.0	30

#	Article	IF	CITATIONS
595	Microstructural damage and fracture processes in a composite solid rocket propellant. Journal of Spacecraft and Rockets, 1995, 32, 328-334.	1.9	33
596	Elastic Compliance of Four-Point Bend Specimens Comprising Two Linear-Elastic Materials Bonded with a Thin Layer. Journal of Testing and Evaluation, 1995, 23, 95-101.	0.7	7
597	Fatigue-crack propagation behavior in ceramic materials. , 1994, , 359-364.		Ο
598	Near-interfacial crack trajectories in metal-ceramic layered structures. International Journal of Fracture, 1994, 66, 227-240.	2.2	34
599	Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: Role of small cracks in life prediction. Journal of Biomedical Materials Research Part B, 1994, 28, 791-804.	3.1	37
600	Powder processing of ductile-phase-toughened Nbî—,Nb3Al in situ composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 189, 201-208.	5.6	10
601	Cyclic fatigue behavior and fracture toughness of silicon nitride ceramics sintered with rare-earth oxides. Acta Metallurgica Et Materialia, 1994, 42, 3055-3064.	1.8	15
602	Ductile-reinforcement toughening in γ-TiAl intermetallic-matrix composites: Effects on fracture toughness and fatigue-crack propagation resistance. Acta Metallurgica Et Materialia, 1994, 42, 893-911.	1.8	82
603	Interface formation and strength in ceramic-metal systems. Scripta Metallurgica Et Materialia, 1994, 31, 1109-1114.	1.0	52
604	Back-Face Strain Compliance and Electrical-Potential Crack Length Calibrations for the Disk-Shaped Compact-Tension DC(T) Specimen. Journal of Testing and Evaluation, 1994, 22, 117-120.	0.7	24
605	Fatigue-Crack Propagation Behavior in Monolithic and Composite Ceramics and Intermetallics. , 1994, , 277-317.		0
606	On the strength and toughness of structural ceramics bonded to metals. , 1994, , 409-412.		1
607	Mechanics and mechanisms of crack growth at or near ceramic-metal interfaces: interface engineering strategies for promoting toughness. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1993, 166, 221-235.	5.6	67
608	Cyclic fatigue-crack propagation in a silicon carbide whisker-reinforced alumina composite: role of load ratio. Journal of Materials Science, 1993, 28, 3258-3266.	3.7	35
609	The effects of prolonged thermal. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 2233-2245.	1.4	7
610	Strength, fracture, and fatigue behavior of advanced high-temperature intermetallics reinforced with ductile phases. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 585-600.	1.4	53
611	Failure mechanisms in SiC-fiber reinforced 6061 aluminum alloy composites under monotonic and cyclic loading. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1993, 24, 721-734.	1.4	16
612	Crack Growth in a ductile-phase-toughened in situ intermetallic composite under monotonic and cyclic loading. Scripta Metallurgica Et Materialia, 1993, 29, 1107-1112.	1.0	51

#	Article	IF	CITATIONS
613	Stress-Corrosion Cracking at Ceramic-Metal Interfaces. Materials Research Society Symposia Proceedings, 1993, 314, 109.	0.1	5
614	PYROLYTIC CARBON COATINGS., 1993, , 261-279.		7
615	Microstructural Effects On Fatigue-Crack Growth Behavior In γ-TiAl/β-TiNb Intermetallic Composites. Materials Research Society Symposia Proceedings, 1992, 273, 127.	0.1	0
616	Fracture and Fatigue Behavior in Nb ₃ Al+ Nb Intermetallic Composites. Materials Research Society Symposia Proceedings, 1992, 273, 433.	0.1	6
617	Fatigue of aluminium—lithium alloys. International Materials Reviews, 1992, 37, 153-186.	19.3	129
618	On the contrasting role of ductile-phase reinforcements in the fracture toughness and fatigue-crack propagation behavior of TiNb/γ-TiAl intermetallic matrix composites. Acta Metallurgica Et Materialia, 1992, 40, 353-361.	1.8	100
619	Cyclic Fatigue-Crack Growth in a SiC-Whisker-Reinforced Alumina Ceramic Composite: Long- and Small-Crack Behavior. Journal of the American Ceramic Society, 1992, 75, 759-771.	3.8	173
620	Fatigue crack propagation resistance of ductile TiNb-reinforced Î ³ -TiAl intermetallic matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1992, 153, 479-485.	5.6	10
621	Ductile-phase toughening and Fatigue-Crack Growth in Nb-Reinforced Molybdenum Disilicide Intermetallic Composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1992, 23, 2249-2257.	1.4	55
622	On the fractography of overload, stress corrosion, and cyclic fatigue failures in pyrolytic-carbon materials used in prosthetic heart-valve devices. Journal of Biomedical Materials Research Part B, 1992, 26, 69-76.	3.1	13
623	CYCLIC FATIGUE-CRACK PROPAGATION IN CERAMICS AND CERAMIC COMPOSITES. , 1992, , 325-332.		2
624	Fatigue crack propagation resistance of ductile TiNb-reinforced γ-TiAl intermetallic matrix composites. , 1992, , 479-485.		1
625	Small-Crack Behavior and Safety-Critical-Design Criteria for Cyclic Fatigue in Mg-PSZ Ceramics. , 1992, , 69-81.		0
626	Cyclic Fatigue Life and Crack-Growth Behavior of Microstructurally Small Cracks in Magnesia-Partially-Stabilized Zirconia Ceramics. Journal of the American Ceramic Society, 1991, 74, 1259-1268.	3.8	69
627	Fatigue crack propagation and cryogenic fracture toughness behavior in powder metallurgy aluminum-lithium alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1991, 22, 191-202.	1.4	16
628	Cyclic fatigue-crack propagation along ceramic/metal interfaces. Acta Metallurgica Et Materialia, 1991, 39, 2145-2156.	1.8	84
629	Cyclic Fatigue of Ceramics. Journal of the Ceramic Society of Japan, 1991, 99, 1047-1062.	1.3	116
630	A comparison of fatigue-crack propagation behavior in sheet and plate aluminum-lithium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1991, 141, 39-48.	5.6	20

#	Article	IF	CITATIONS
631	Cyclic Fatigue-Crack Propagation in Magnesia-Partially-Stabilized Zirconia Ceramics. Journal of the American Ceramic Society, 1990, 73, 893-903.	3.8	222
632	Crack-Tip Transformation Zones in Toughened Zirconia. Journal of the American Ceramic Society, 1990, 73, 2659-2666.	3.8	100
633	Cyclic fatigue-crack growth behaviour of short cracks in SiC-reinforced lithium aluminosilicate glass-ceramic composite. Journal of Materials Science Letters, 1990, 9, 719-725.	0.5	22
634	Cyclic fatigue-crack propagation, stress-corrosion, and fracture-toughness behavior in pyrolytic carbon-coated graphite for prosthetic heart valve applications. Journal of Biomedical Materials Research Part B, 1990, 24, 189-206.	3.1	71
635	Transient subcritical crack-growth behavior in transformation-toughened ceramics. Acta Metallurgica Et Materialia, 1990, 38, 2327-2336.	1.8	28
636	Monotonic and cyclic crack growth in a TiC-particulate-reinforced Tiî—,6Alî—,4V metal-matrix composite. Scripta Metallurgica Et Materialia, 1990, 24, 1691-1694.	1.0	15
637	Mechanisms influencing the cryogenic fracture-toughness behavior of aluminum-lithium alloys. Acta Metallurgica Et Materialia, 1990, 38, 2309-2326.	1.8	47
638	On the interpretation of the fractal character of fracture surfaces. Acta Metallurgica Et Materialia, 1990, 38, 143-159.	1.8	181
639	Microstructural characterization of α2 + B2 titanium aluminide intermetallic (Super-α2) using transmission electron microscopy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1990, 130, 193-203.	5.6	1
640	Fatigue-crack Propagation in Advanced Aerospace Materials: Aluminum-lithium Alloys. , 1989, , 3787-3816.		3
641	Mechanical properties of Al–Li alloys Part 2 Fatigue crack propagation. Materials Science and Technology, 1989, 5, 896-907.	1.6	29
642	Crack bridging by uncracked ligaments during fatigue-crack growth in SiC-reinforced aluminum-alloy composites. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 897-908.	1.4	163
643	Cryogenic toughness of commercial aluminum-lithium alloys: Role of delamination toughening. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1989, 20, 485-497.	1.4	103
644	Mechanisms associated with transient fatigue crack growth under variable-amplitude loading: An experimental and numerical study. Engineering Fracture Mechanics, 1989, 32, 613-638.	4.3	134
645	Fatigue crack propagation in ARALL® LAMINATES: Measurement of the effect of crack-tip shielding from crack bridging. Engineering Fracture Mechanics, 1989, 32, 361-377.	4.3	110
646	On the particle-size dependence of fatigue-crack propagation thresholds in SiC-particulate-reinforced aluminum-alloy composites: Role of crack closure and crack trapping. Acta Metallurgica, 1989, 37, 2267-2278.	2.1	148
647	Spatially Resolved Raman Spectroscopy Study of Transformed Zones in Magnesia-Partially-Stabilized Zirconia. Journal of the American Ceramic Society, 1989, 72, 1124-1130.	3.8	55
648	Fracture-toughness behavior of 2090-T83 aluminiumî—ļithium alloy sheet at ambient and cryogenic temperatures. Scripta Metallurgica, 1989, 23, 1129-1134.	1.2	13

#	Article	IF	CITATIONS
649	Mechanical properties of Al–Li alloys Part 1 Fracture toughness and microstructure. Materials Science and Technology, 1989, 5, 882-895.	1.6	75
650	Fracture toughness, fatigue crack propagation and creep rupture behaviour in thick section weldments of 3Cr-Mo pressurevessel steels developed for high-temperature/high-pressure hydrogen service. High Temperature Technology, 1989, 7, 17-26.	0.3	3
651	Ceramic/metal interfacial crack growth: Toughening by controlled microcracks and interfacial geometries. Acta Metallurgica, 1988, 36, 2083-2093.	2.1	83
652	On the behavior of small fatigue cracks in commercial aluminum-lithium alloys. Engineering Fracture Mechanics, 1988, 31, 623-635.	4.3	56
653	On the effect of sampling volume on the microscopic cleavage fracture stress. Engineering Fracture Mechanics, 1988, 29, 697-703.	4.3	8
654	Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1988, 103, 15-28.	5.6	720
655	Mechanisms for the retardation of fatigue cracks following single tensile overloads: behavior in aluminum-lithium alloys. Acta Metallurgica, 1988, 36, 2849-2862.	2.1	43
656	Effect of prolonged high-temperature exposure on the fatigue and fracture behavior of aluminum-lithium alloy 2090. Materials Science and Engineering, 1988, 100, 23-30.	0.1	20
657	Role of silicon carbide particles in fatigue crack growth in SiC-particulate-reinforced aluminum alloy composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1988, 102, 181-192.	5.6	161
658	Fatigue crack propagation in aluminum- lithium alloy 2090: Part I. long crack behavior. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 549-561.	1.4	80
659	Fatigue crack propagation in aluminum-lithium alloy 2090: Part II. small crack behavior. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1988, 19, 563-569.	1.4	31
660	On the fracture toughness of aluminum-lithium alloy 2090-T8E41 at ambient and cryogenic temperatures. Scripta Metallurgica, 1988, 22, 93-98.	1.2	38
661	Crack-Tip Shielding in Metal-Matrix Composites: Modelling Of Crack Bridging by Uncracked Ligaments. Materials Research Society Symposia Proceedings, 1988, 120, 81.	0.1	1
662	On the Role of Crack Closure Mechanisms in Influencing Fatigue Crack Growth Following Tensile Overloads in a Titanium Alloy: Near Threshold Versus Higher I" <i>K</i> Behavior. , 1988, , 93-111.		22
663	Development of Fatigue Crack Closure with the Extension of Long and Short Cracks in Aluminum Alloy 2124: A Comparison of Experimental and Numerical Results. , 1988, , 300-316.		8
664	Fatigue Crack Propagation in 2090 Aluminum-Lithium Alloy: Effect of Compression Overload Cycles. Journal of Engineering Materials and Technology, Transactions of the ASME, 1987, 109, 81-85.	1.4	27
665	Use of a constant Kmax test procedure to predict small crack growth behavior in 2090-T8E41 aluminum-lithium alloy. Scripta Metallurgica, 1987, 21, 1541-1546.	1.2	19
666	Effects of pre-existing grain boundary microvoid distributions on fracture toughness and fatigue crack growth in low alloy steel. Acta Metallurgica, 1987, 35, 2227-2242.	2.1	11

#	Article	IF	CITATIONS
667	role of crack tip shielding in the initiation and growth of long and small fatigue cracks in composite microstructures. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1987, 18, 1613-1627.	1.4	56
668	Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1987, 18, 641-651.	2.2	140
669	AN ANALYSIS OF CRACK TIP SHIELDING IN ALUMINUM ALLOY 2124: A COMPARISON OF LARGE, SMALL, THROUGH-THICKNESS AND SURFACE FATIGUE CRACKS. Fatigue and Fracture of Engineering Materials and Structures, 1987, 10, 343-362.	3.4	64
670	Fatigue Crack Propagation in Transformation-Toughened Zirconia Ceramic. Journal of the American Ceramic Society, 1987, 70, C-248-C-252.	3.8	169
671	Subcritical Crack Growth along Ceramic-Metal Interfaces. Journal of the American Ceramic Society, 1987, 70, C-352-C-355.	3.8	14
672	On the growth of small fatigue cracks in aluminum-lithium alloy 2090. Scripta Metallurgica, 1986, 20, 1459-1464.	1.2	30
673	Statistical analysis of cleavage fracture ahead of sharp cracks and rounded notches. Acta Metallurgica, 1986, 34, 2205-2216.	2.1	86
674	A statistical model of brittle fracture by transgranular cleavage. Journal of the Mechanics and Physics of Solids, 1986, 34, 477-497.	4.8	164
675	Small fatigue cracks: A statement of the problem and potential solutions. Materials Science and Engineering, 1986, 84, 11-16.	0.1	196
676	Fatigue Life Estimation Procedures for the Endurance of a Cardiac Valve Prosthesis: Stress/Life and Damage-Tolerant Analyses. Journal of Biomechanical Engineering, 1986, 108, 153-160.	1.3	39
677	Susceptibility to hydrogen attack of a thick-section 3Cr–1 Mo–1 Ni pressure-vessel steel-role of cooling rate. Materials Science and Technology, 1985, 1, 198-208.	1.6	7
678	On the growth of cracks at the fatigue threshold following compression overloads: Role of load ratio. Materials Science and Engineering, 1985, 74, 11-17.	0.1	4
679	Effects of microstructure on fatigue crack propagation and crack closure behavior in aluminum alloy 7150. Materials Science and Engineering, 1985, 70, 151-160.	0.1	52
680	On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1985, 16, 233-248.	1.4	77
681	On macroscopic and microscopic analyses for crack initiation and crack growth toughness in ductile alloys. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1985, 16, 233-248.	1.4	285
682	On the development of crack closure and the threshold condition for short and long fatigue cracks in 7150 aluminum alloy. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1985, 16, 1467-1477.	1.4	39
683	A study of fatigue crack propagation in prior hydrogen attacked pressure vessel steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1985, 16, 1491-1501.	1.4	15
684	Fatigue crack propagation in oil environments—I. Crack growth behavior in silicone and paraffin oils. Acta Metallurgica, 1985, 33, 105-116.	2.1	45

#	Article	IF	CITATIONS
685	On the role of compression overloads in influencing crack closure and the threshold condition for fatigue crack growth in 7150 aluminum alloy. Engineering Fracture Mechanics, 1985, 22, 35-48.	4.3	34
686	Fatigue crack propagation in oil environments— II. A model for crack closure induced by viscous fluids. Acta Metallurgica, 1985, 33, 117-127.	2.1	44
687	Fatigue crack propagation in a dual-phase plain-carbon steel. Scripta Metallurgica, 1985, 19, 751-755.	1.2	17
688	SLOW CRACK GROWTH: MACROSCOPIC AND MICROSCOPIC ASPECTS. , 1985, , 93-124.		3
689	THRESHOLDS FOR FATIGUE CRACK PROPAGATION: QUESTIONS AND ANOMALIES. , 1984, , 235-260.		6
690	Effects of microstructure on fatigue crack growth in duplex ferrite-martensite steels. Materials Science and Engineering, 1984, 62, 79-92.	0.1	35
691	Fatigue crack propagation in dual-phase steels: Effects of ferritic-martensitic microstructures on crack path morphology. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1984, 15, 1193-1207.	2.2	80
692	A new series of advanced 3Cr-Mo-Ni steels for thick section pressure vessels in high temperature and pressure hydrogen service. Journal of Materials for Energy Systems, 1984, 6, 151-162.	0.2	9
693	Propagation of short fatigue cracks. International Metals Reviews, 1984, 29, 445-475.	0.3	204
694	On the location of crack closure and the threshold condition for fatigue crack growth. Scripta Metallurgica, 1984, 18, 847-850.	1.2	17
695	FATIGUE CRACK PROPAGATION IN VISCOUS ENVIRONMENTS. , 1984, , 711-717.		3
696	Propagation of short fatigue cracks. International Materials Reviews, 1984, 29, 445-475.	19.3	344
697	On the contrast between mode I and mode III fatigue crack propagation under variable-amplitude loading conditions. Materials Science and Engineering, 1983, 59, L1-L5.	0.1	7
698	The fracture mechanics similitude concept: questions concerning its application to the behavior of short fatigue cracks. Materials Science and Engineering, 1983, 57, L27-L30.	0.1	38
699	Micro-mechanical modelling of mode III fatigue crack growth in rotor steels. International Journal of Fracture, 1983, 23, 163-185.	2.2	43
700	Influence of overloads and block loading sequences on Mode III fatigue crack propagation in A469 rotor steel. Engineering Fracture Mechanics, 1983, 18, 763-783.	4.3	23
701	On the influence of environment on the load ratio dependence of fatigue thresholds in pressure vessel steel. Engineering Fracture Mechanics, 1983, 18, 785-800.	4.3	108
702	On the influence of rubbing fracture surfaces on fatigue crack propagation in mode III. International Journal of Fatigue, 1983, 5, 29-35.	5.7	42

#	Article	IF	CITATIONS
703	Some considerations on the modelling of oxide-induced fatigue crack closure using solutions for a rigid wedge inside a linear elastic crack. Scripta Metallurgica, 1983, 17, 575-580.	1.2	54
704	Why Ductile Fracture Mechanics?. Journal of Engineering Materials and Technology, Transactions of the ASME, 1983, 105, 1-7.	1.4	20
705	Mechanistic dissimilarities between environmentally influenced fatigue-crack propagation at near-threshold and higher growth rates in lower strength steels. Metal Science, 1982, 16, 529-538.	0.7	89
706	Influence of plastic deformation on hydrogen transport in 2 Cr-1Mo steel. Scripta Metallurgica, 1982, 16, 455-459.	1.2	41
707	Some considerations on fatigue crack closure at near-threshold stress intensities due to fracture surface morphology. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 937-940.	1.4	230
708	Mode III fatigue crack propagation in low alloy steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 101-110.	1.4	86
709	A geometric model for fatigue crack closure induced by fracture surface roughness. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 1627-1631.	1.4	400
710	Effects of friction and high torque on fatigue crack propagation in Mode III. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1982, 13, 2197-2204.	1.4	57
711	Fatigue crack propagation thresholds for long and short cracks in René 95 Nickel-base superalloy. Materials Science and Engineering, 1982, 55, 63-67.	0.1	67
712	ON THE CALIBRATION, OPTIMIZATION AND USE OF d.c. ELECTRICAL POTENTIAL METHODS FOR MONITORING MODE III CRACK GROWTH IN TORSIONALLY-LOADED SAMPLES. Fatigue and Fracture of Engineering Materials and Structures, 1982, 5, 91-99.	3.4	24
713	On the influence of gaseous hydrogen in decelerating fatigue crack growth rates in ultrahigh strength steels. Scripta Metallurgica, 1981, 15, 905-908.	1.2	38
714	An evaluation of the application of fracture mechanics procedures to fusion first wall structures. Journal of Nuclear Materials, 1981, 103, 149-154.	2.7	4
715	On the influence of fatigue underloads on cyclic crack growth at low stress intensities. Materials Science and Engineering, 1981, 51, 61-69.	0.1	34
716	Application of Fracture Mechanics to Fatigue, Corrosion-Fatigue and Hydrogen Embrittlement. , 1981, , 81-108.		8
717	Near-Threshold Fatigue Crack Growth in 2 1/4 Cr-1Mo Pressure Vessel Steel in Air and Hydrogen. Journal of Engineering Materials and Technology, Transactions of the ASME, 1980, 102, 293-299.	1.4	204
718	On the Use of Side-Grooves in Estimating Jlc Fracture Toughness With Charpy-Size Specimens. Journal of Engineering Materials and Technology, Transactions of the ASME, 1980, 102, 192-199.	1.4	31
719	FRACTURE TOUGHNESS PREDICTIONS FOR NUCLEAR PRESSURE VESSEL STEELS. , 1980, , 489-500.		0
720	Near-threshold fatigue-crack propagation in steels. International Metals Reviews, 1979, 24, 205-230.	0.3	176

#	Article	IF	CITATIONS
721	On the calibration of the electrical potential technique for monitoring crack growth using finite element methods. International Journal of Fracture, 1979, 15, 47-55.	2.2	104
722	INFLUENCE OF RETAINED AUSTENITE ON FATIGUE CRACK PROPAGATION IN HP 9-4-20 HIGH STRENGTH ALLOY STEEL. Fatigue and Fracture of Engineering Materials and Structures, 1979, 1, 107-121.	3.4	15
723	Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1979, 10, 1557-1570.	1.4	223
724	Near-threshold fatigue-crack propagation in steels. International Materials Reviews, 1979, 24, 205-230.	19.3	210
725	Optimization of the Electrical Potential Technique for Crack Growth Monitoring in Compact Test Pieces Using Finite Element Analysis. Journal of Testing and Evaluation, 1979, 7, 208-215.	0.7	68
726	A simple test method for measuring ?valid? Jlc fracture toughness in Charpy-size surveillance specimens of nuclear pressure vessel steel. International Journal of Fracture, 1978, 14, R329-R334.	2.2	17
727	Further considerations on the inconsistency in toughness evaluation of AISI 4340 steel austenitized at increasing temperatures. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 331-341.	1.4	162
728	Effects of silicon additions and retained austenite on stress corrosion cracking in ultrahigh strength steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 35-40.	1.4	74
729	Mechanisms of tempered martensite embrittlement in low alloy steels. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1978, 9, 1039-1053.	1.4	242
730	Authors' reply to "Comments on †The effect of prior austenite grain size on near-threshold fatigue crack growth' by JP. Baiklon, J. Masounave and J. Lanteigne― Scripta Metallurgica, 1978, 12, 613-614.	1.2	1
731	EFFECTS OF STRENGTH AND GRAIN SIZE ON NEAR-THRESHOLD FATIGUE CRACK GROWTH IN ULTRA-HIGH STRENGTH STEEL. , 1978, , 1325-1331.		2
732	Near-Threshold Fatigue Crack Propagation in Ultra-High Strength Steel: Influence of Load Ratio and Cyclic Strength. Journal of Engineering Materials and Technology, Transactions of the ASME, 1977, 99, 195-204.	1.4	131
733	Influence of microstructure on near-threshold fatigue-crack propagation in ultra-high strength steel. Metal Science, 1977, 11, 368-381.	0.7	184
734	On the effect of prior austenite grain size on near-threshold fatigue crack growth. Scripta Metallurgica, 1977, 11, 1113-1118.	1.2	39
735	Influence of impurity segregation on temper em brittlement and on slow fatigue crack growth and threshold behavior in 300-M high strength steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1977, 8, 1131-1140.	1.4	47
736	Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1976, 7, 831-838.	1.4	258
737	Effects of Thickness on Fibrous Fracture from a Notch and on Fatigue-Crack Propagation in Low-Strength Steel. Metal Science, 1975, 9, 485-492.	0.7	30
738	Some Considerations of the Influence of Sub-Critical Cleavage Growth during Fatigue-Crack Propagation in Steels. Metal Science, 1975, 9, 119-126.	0.7	76

#	Article	IF	CITATIONS
739	Contribution on "slow fatigue crack growth and threshold behaviour of a medium carbon steel in air and vacuum―by R. J. Cooke, P. E. Irving, G. S. Booth and C. J. Beevers. Engineering Fracture Mechanics, 1975, 7, 187-189.	4.3	10
740	Fatigue crack propagation in a Type 316 stainless steel weldment. Metals Technology, 1975, 2, 253-263.	0.3	41
741	Micro cleavage cracking during fatigue crack propagation in low strength steel. Materials Science and Engineering, 1974, 14, 7-14.	0.1	80
742	On the influence of high austenitizing temperatures and "overheating―on fracture and fatigue crack propagation in a low alloy steel. Metallurgical and Materials Transactions A - Physical Metallurgy and Materials Science, 1974, 5, 782-785.	1.4	52
743	Mechanisms of fatigue crack growth in low alloy steel. Acta Metallurgica, 1973, 21, 639-648.	2.1	251
744	On the relationship between critical tensile stress and fracture toughness in mild steel. Journal of the Mechanics and Physics of Solids, 1973, 21, 395-410.	4.8	1,338
745	Segregation Effects and the Toughness of Untempered Low-Alloy Steels. Nature: Physical Science, 1972, 239, 104-106.	0.8	34
746	Crack-growth monitoring: Optimisation of the electrical potential technique using an analogue method. International Journal of Fracture Mechanics, 1971, 7, 462.	0.8	93
747	On the Development of Life Prediction Methodologies for the Failure of Human Teeth. , 0, , 136-145.		1
748	Arapaima Fish Scale: One of the Toughest Flexible Biological Materials. SSRN Electronic Journal, 0, , .	0.4	2