João P Lourenço

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2634659/publications.pdf

Version: 2024-02-01

69 papers

1,399 citations

279701 23 h-index 414303 32 g-index

73 all docs 73 docs citations

times ranked

73

1733 citing authors

#	Article	IF	CITATIONS
1	Conversion of glycerol over vanadium supported beta zeolite: Role of acidity and alkali cations. Microporous and Mesoporous Materials, 2022, 329, 111536.	2.2	8
2	Unique stiffness-deformability features of dendrimeric silica reinforced HDPE nanocomposites obtained by an innovative route. Microporous and Mesoporous Materials, 2022, 331, 111619.	2.2	3
3	A New Application of Solvent Extraction to Separate Copper from Extreme Acid Mine Drainage Producing Solutions for Electrochemical and Biological Recovery Processes. Mine Water and the Environment, 2022, 41, 387-401.	0.9	6
4	Innovative route for the preparation of high-performance polyolefin materials based on unique dendrimeric silica particles. Polymer Chemistry, 2021, 12, 4546-4556.	1.9	5
5	Encapsulation of Rosmarinus officinalis essential oil in $\hat{l}^2\hat{a}$ eyclodextrins. Journal of Food Processing and Preservation, 2021, 45, e15806.	0.9	4
6	Dielectric Properties and Spectral Characteristics of Photocatalytic Constant of TiO2 Nanoparticles Doped with Cobalt. Nanomaterials, 2021, 11, 2519.	1.9	1
7	Superparamagnetic Iron Oxide Nanoparticles and Essential Oils: A New Tool for Biological Applications. International Journal of Molecular Sciences, 2020, 21, 6633.	1.8	17
8	Photodegradation of chloramphenicol and paracetamol using PbS/TiO2 nanocomposites produced by green synthesis. Journal of the Iranian Chemical Society, 2020, 17, 2013-2031.	1.2	32
9	Structural and magnetic properties of P25 TiO2 nanoparticles doped by Co. Journal of Magnetism and Magnetic Materials, 2020, 501, 166442.	1.0	9
10	Magnetite nanoparticles functionalized with propolis against methicillin resistant strains of AStaphylococcus aureus. Journal of the Taiwan Institute of Chemical Engineers, 2019, 102, 25-33.	2.7	13
11	Gas-phase conversion of glycerol to allyl alcohol over vanadium-supported zeolite beta. Catalysis Communications, 2019, 127, 20-24.	1.6	18
12	Extraordinary mechanical performance in disentangled UHMWPE films processed by compression molding. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90, 202-207.	1.5	11
13	Synthesis and characterization of Locust Bean Gum derivatives and their application in the production of nanoparticles. Carbohydrate Polymers, 2018, 181, 974-985.	5.1	29
14	Aluminum Containing Dendrimeric Silica Nanoparticles as Promising Metallocene Catalyst Supports for Ethylene Polymerization. ChemCatChem, 2018, 10, 3761-3769.	1.8	4
15	Spray-dried fucoidan microparticles for pulmonary delivery of antitubercular drugs. Journal of Microencapsulation, 2018, 35, 392-405.	1.2	15
16	Gas-phase dehydration of glycerol over hierarchical silicoaluminophosphate SAPO-40. Catalysis Communications, 2017, 95, 16-20.	1.6	18
17	UHMWPE/HDPE in-reactor blends, prepared by in situ polymerization: Synthetic aspects and characterization. EXPRESS Polymer Letters, 2017, 11, 344-361.	1.1	15
18	A New Post-Metallocene-Ti Catalyst with Maltolate Bidentade Ligand: an Investigation in Heterogeneous Polymerization Reactions in Different Mesoporous Supports. Journal of the Brazilian Chemical Society, 2016, , .	0.6	0

#	Article	IF	CITATIONS
19	Impact of Biohybrid Magnetite Nanoparticles and Moroccan Propolis on Adherence of Methicillin Resistant Strains of Staphylococcus aureus. Molecules, 2016, 21, 1208.	1.7	25
20	Inhalable Antitubercular Therapy Mediated by Locust Bean Gum Microparticles. Molecules, 2016, 21, 702.	1.7	36
21	Preparation of polypropyleneâ€based nanocomposites using nanosized <scp>MCM</scp> â€41 as support and <i>in situ</i>	1.6	7
22	Recovery of gold(0) nanoparticles from aqueous solutions using effluents from a bioremediation process. RSC Advances, 2016, 6, 112784-112794.	1.7	8
23	Hafnocene catalyst for polyethylene and its nanocomposites with SBA-15 by in situ polymerization: Immobilization approaches, catalytic behavior and properties evaluation. European Polymer Journal, 2016, 85, 298-312.	2.6	7
24	Hybrid materials based on polyethylene and MCM-41 microparticles functionalized with silanes: Catalytic aspects of in situ polymerization, crystalline features and mechanical properties. Microporous and Mesoporous Materials, 2016, 232, 86-96.	2.2	26
25	UHMWPE/SBA-15 nanocomposites synthesized by in situ polymerization. Microporous and Mesoporous Materials, 2016, 232, 13-25.	2.2	21
26	Charged pullulan derivatives for the development of nanocarriers by polyelectrolyte complexation. International Journal of Biological Macromolecules, 2016, 86, 129-138.	3.6	34
27	Gas-phase dehydration of glycerol over thermally-stable SAPO-40 catalyst. RSC Advances, 2015, 5, 10667-10674.	1.7	21
28	Start-up, adjustment and long-term performance of a two-stage bioremediation process, treating real acid mine drainage, coupled with biosynthesis of ZnS nanoparticles and ZnS/TiO2 nanocomposites. Minerals Engineering, 2015, 75, 85-93.	1.8	33
29	Dichlorodioxomolybdenum(vi) complexes bearing oxygen-donor ligands as olefin epoxidation catalysts. Dalton Transactions, 2015, 44, 14139-14148.	1.6	25
30	Green synthesis of covellite nanocrystals using biologically generated sulfide: Potential for bioremediation systems. Journal of Environmental Management, 2013, 128, 226-232.	3.8	20
31	Decorated MCM-41/polyethylene hybrids: Crystalline details and viscoelastic behavior. Polymer, 2013, 54, 2611-2620.	1.8	25
32	Bis(pyrazolyl)methanetetracarbonyl-molybdenum(0) as precursor to a molybdenum(VI) catalyst for olefin epoxidation. Journal of Organometallic Chemistry, 2013, 723, 56-64.	0.8	23
33	Functionalization of Mesoporous MCMâ€41 (Nano)particles: Preparation Methodologies, Role on Catalytic Features, and Dispersion Within Polyethylene Nanocomposites. ChemCatChem, 2013, 5, 966-976.	1.8	14
34	Nanostructured silica materials in olefin polymerisation: From catalytic behaviour to polymer characteristics. Progress in Polymer Science, 2012, 37, 1764-1804.	11.8	59
35	Gas permeability properties of decorated MCM-41/polyethylene hybrids prepared by in-situ polymerization. Journal of Membrane Science, 2012, 415-416, 702-711.	4.1	42
36	Sulfonic-functionalized SBA-15 as an active catalyst for the gas-phase dehydration of Glycerol. Catalysis Communications, 2012, 19, 105-109.	1.6	54

#	Article	IF	CITATIONS
37	Synthesis of nanocrystalline ZnS using biologically generated sulfide. Hydrometallurgy, 2012, 117-118, 57-63.	1.8	29
38	Hybrid HDPE/MCM-41 nanocomposites: Crystalline structure and viscoelastic behaviour. Microporous and Mesoporous Materials, 2010, 130, 215-223.	2.2	40
39	Cycloaddition reactions of nitrosoalkenes, azoalkenes and nitrile oxides mediated by hydrotalcite. Arkivoc, 2010, 2010, 170-182.	0.3	13
40	Self-Reinforced Hybrid Polyethylene/MCM-41 Nanocomposites: <l>ln-Situ</l> Polymerisation and Effect of MCM-41 Content on Rigidity. Journal of Nanoscience and Nanotechnology, 2009, 9, 3966-3974.	0.9	34
41	Comparison of liquid-phase olefin epoxidation catalysed by dichlorobis-(dimethylformamide)dioxomolybdenum(VI) in homogeneous phase and grafted onto MCM-41. Journal of Molecular Catalysis A, 2009, 297, 110-117.	4.8	42
42	Mesoporous Ga-MCM-41 as support for metallocene catalysts: Acidity–activity relationship. Journal of Molecular Catalysis A, 2009, 310, 1-8.	4.8	20
43	Hydrotalcite catalysed [4+2] cycloaddition reactions of nitroso- and azo-alkenes. Tetrahedron Letters, 2009, 50, 1311-1313.	0.7	17
44	Mild liquid-phase Friedel-Crafts acylation of heteroaromatic compounds over zeolite Beta. Journal of Molecular Catalysis A, 2009, 305, 100-103.	4.8	31
45	Mesoporous Ga-MCM-41: A very efficient support for the heterogenisation of metallocene catalysts. Catalysis Communications, 2008, 10, 71-73.	1.6	21
46	The Infrared Spectrum of Solid <scp>l</scp> -Alanine: Influence of pH-Induced Structural Changes. Journal of Physical Chemistry A, 2008, 112, 8280-8287.	1.1	52
47	An elegant way to increase acidity in SAPOs: use of methylamine as co-template during synthesis. Studies in Surface Science and Catalysis, 2008, 174, 281-284.	1.5	15
48	Methylamine as true template and TEAOH as purifying agent: unexpected roles of current organic additives in the hydrothermal synthesis of microporous aluminophosphates. Studies in Surface Science and Catalysis, 2007, 170, 456-463.	1.5	1
49	Unusual framework stabilization of Cu(II) and Cu(I) ions in a novel copper-substituted aluminophosphate with AEN topology prepared by one pot synthesis. Studies in Surface Science and Catalysis, 2007, , 185-192.	1.5	2
50	Ethylene polymerisation with zirconocene supported in Al-modified MCM-41: Catalytic behaviour and polymer properties. Journal of Molecular Catalysis A, 2007, 277, 93-101.	4.8	30
51	Photochemistry of benzophenone on Ti-MCM-41 surfaces. Microporous and Mesoporous Materials, 2006, 89, 143-149.	2.2	6
52	Al-containing MCM-41 type materials prepared by different synthesis methods: Hydrothermal stability and catalytic properties. Microporous and Mesoporous Materials, 2006, 94, 56-65.	2.2	52
53	Two new aluminophosphates, IST-1 and IST-2: First examples of a dual templating role of water and methylamine in generating microporous structures. Microporous and Mesoporous Materials, 2006, 90, 112-128.	2.2	13
54	Photochemistry of benzophenone adsorbed on MCM-41 surface. Microporous and Mesoporous Materials, 2005, 84, 1-10.	2.2	21

#	Article	IF	CITATIONS
55	Copolymerization of ethylene and non-conjugated diene with metallocene/methylaluminoxane system supported on MCM-41 mesoporous material. European Polymer Journal, 2004, 40, 2555-2563.	2.6	7
56	Evidence of a solvent screen effect affecting the redox properties of Co(II) ions in CoAPO-37, CoAPO-40 and CoIST-2 (AEN), by cyclic voltammetry. Studies in Surface Science and Catalysis, 2004, 154, 1649-1654.	1.5	1
57	Structural State and Redox Behavior of Framework Co(II) in CoIST-2:  A Novel Cobalt-Substituted Aluminophosphate with AEN Topology. Journal of Physical Chemistry B, 2004, 108, 8344-8354.	1.2	19
58	Structure analysis of the novel microporous aluminophosphate IST-1 using synchrotron powder diffraction data and HETCOR MAS NMR. Microporous and Mesoporous Materials, 2003, 65, 43-57.	2.2	29
59	Synthesis and characterization of new CoAPSO-40 and ZnAPSO-40 molecular sieves. Influence of the composition on the thermal and hydrothermal stability of AlPO4-40-based materials. Microporous and Mesoporous Materials, 2000, 38, 267-278.	2.2	26
60	Generation of acid sites by incorporation of cobalt in the AFR structure. Studies in Surface Science and Catalysis, 1997, , 1973-1980.	1.5	3
61	Spectroscopic Characterization of the Hydroxyl Groups in SAPO-40. 2. Interaction with CO and N2. Journal of Physical Chemistry B, 1997, 101, 9244-9249.	1.2	19
62	Synthesis, characterization, and catalytic properties of AlPO4-40, CoAPO-40, and ZnAPO-40. Zeolites, 1997, 18, 398-407.	0.9	22
63	Multiple-quantum 27Al MAS n.m.r. spectroscopy of microporous AlPO-40 and SAPO-40. Zeolites, 1997, 19, 156-160.	0.9	23
64	Disproportionation of ethylbenzene over SAPO-40. Reaction Kinetics and Catalysis Letters, 1996, 59, 219-225.	0.6	4
65	Characterization of stability and porosity of SAPO-40 using m-xylene as model reaction. Applied Catalysis A: General, 1996, 148, 167-180.	2.2	12
66	Spectroscopic Characterization of Hydroxyl Groups in SAPO-40. 1. Study of the Template-Free Samples and Their Interaction with Ammonia. The Journal of Physical Chemistry, 1996, 100, 11072-11079.	2.9	52
67	Thermal and hydrothermal stability of the silicoaluminophosphate SAPO-40. Microporous Materials, 1995, 4, 445-453.	1.6	19
68	Solid-state NMR and powder XRD studies of the structure of SAPO-40 upon hydration–dehydration cycles. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 2213-2215.	1.7	9
69	Study of Catalytic Properties of SAPO-40. Studies in Surface Science and Catalysis, 1994, 84, 867-874.	1.5	20