Lidiia Samarina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2633914/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive co-expression analysis provides novel insights into temporal variation of flavonoids in fresh leaves of the tea plant (Camellia sinensis). Plant Science, 2020, 290, 110306.	3.6	51

 $_{2}$ Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia) Tj ETQq0 0 0 rgBT $_{2.8}^{10}$ Overlock $_{3.8}^{10}$ Tf 50 $_{2.8}^{10}$

3	Comparative Expression Analysis of Stress-Inducible Candidate Genes in Response to Cold and Drought in Tea Plant [Camellia sinensis (L.) Kuntze]. Frontiers in Genetics, 2020, 11, 611283.	2.3	25
4	Physiological, biochemical and genetic responses of Caucasian tea (<i>Camellia sinensis</i> (L.) Kuntze) genotypes under cold and frost stress. PeerJ, 2020, 8, e9787.	2.0	18
5	A comparison of genetic stability in tea [Camellia sinensis (L.) Kuntze] plantlets derived from callus with plantlets from long-term in vitro propagation. Plant Cell, Tissue and Organ Culture, 2019, 138, 467-474.	2.3	17
6	Duplication and transcriptional divergence of three Kunitz protease inhibitor genes that modulate insect and pathogen defenses in tea plant (Camellia sinensis). Horticulture Research, 2019, 6, 126.	6.3	17
7	Citrus genebank collections: international collaboration opportunities between the US and Russia. Genetic Resources and Crop Evolution, 2018, 65, 433-447.	1.6	10
8	Transferability of ISSR, SCoT and SSR Markers for Chrysanthemum × Morifolium Ramat and Genetic Relationships Among Commercial Russian Cultivars. Plants, 2021, 10, 1302.	3.5	10
9	Genetic Diversity and Genome Size Variability in the Russian Genebank Collection of Tea Plant [Camellia sinensis (L). O. Kuntze]. Frontiers in Plant Science, 2021, 12, 800141.	3.6	8
10	Genetic diversity and phylogenetic relationships among citrus germplasm in the Western Caucasus assessed with SSR and organelle DNA markers. Scientia Horticulturae, 2021, 288, 110355.	3.6	7
11	ENDOPHYTES, AS PROMOTORS OF in vitro PLANT GROWTH (review). Sel'skokhozyaistvennaya Biologiya, 2017, 52, 917-927.	0.3	6
12	Quantifying synergy of plant growth hormones, anti-oxidants, polyamines and silver nitrate for optimizing the micro propagation of Capparis decidua: an underutilised medicinal shrub. Nucleus (India), 2020, 63, 313-325.	2.2	5
13	Biochemical and Genetic Responses of Tea (Camellia sinensis (L.) Kuntze) Microplants under Mannitol-Induced Osmotic Stress In Vitro. Plants, 2020, 9, 1795.	3.5	5
14	Genetic Diversity in Diospyros Germplasm in the Western Caucasus Based on SSR and ISSR Polymorphism. Biology, 2021, 10, 341.	2.8	5
15	The composition and content of phenolic compounds in tea, grown in humid subtropics of Russia. Potravinarstvo, 2019, 13, 32-37.	0.6	5
16	In vitro Morphogenesis of Ornamental Shrubs Camellia japonica and Hydrangea macrophylla. Plant Tissue Culture and Biotechnology, 2017, 27, 181-187.	0.2	4
17	Effects of calcium-containing natural fertilizer on Camellia sinensis (L.) Kuntze. Bangladesh Journal of Botany, 2021, 50, 179-187.	0.4	4
18	Effect of Glutamine, Biotin and ADP on Micropropagation and Growth of Chrysanthemum hybridum, Gerbera jamesonii and Cordyline fruticosa In vitro. Plant Tissue Culture and Biotechnology, 2016, 26, 97-104.	0.2	3

LIDIIA SAMARINA

#	Article	IF	CITATIONS
19	In vitro Conservation of Campanula sclerophylla Kolak ? Endemic Endangered Species of Western Caucasus. Plant Tissue Culture and Biotechnology, 2016, 26, 143-149.	0.2	3
20	Challenges of in vitro conservation of Đ¡itrus germplasm resources. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 24-28.	1.1	3
21	Population Analysis of Diospyros lotus in the Northwestern Caucasus Based on Leaf Morphology and Multilocus DNA Markers. International Journal of Molecular Sciences, 2022, 23, 2192.	4.1	3
22	PROPAGATION in vitro OF SUBTROPICAL, ORNAMENTAL CROPS AND ENDEMIC SPECIES OF WESTERN CAUCASUS: DEVELOPED AND IMPROVED PROTOCOLS. Sel'skokhozyaistvennaya Biologiya, 2014, , 49-58.	0.3	2
23	Citrus genetic resources inÂRussia, Ukraine, Belarus: conservation andÂmanagement. Vavilovskii Zhurnal Genetiki I Selektsii, 2015, 19, .	1.1	2
24	PHYSIOLOGICAL MECHANISMS AND GENETIC FACTORS OF THE TEA PLANT Camellia sinensis (L.) Kuntze RESPONSE TO DROUGHT. Sel'skokhozyaistvennaya Biologiya, 2019, 54, 458-468.	0.3	2
25	In vitro Osmotic Stress Memory in Chrisanthemum hybridum: Structural and Physiological Responses. Plant Tissue Culture and Biotechnology, 2017, 27, 161-169.	0.2	1
26	Genes underlying cold acclimation in the tea plant (<i>Camellia sinensis</i> (L.) Kuntze). Vavilovskii Zhurnal Genetiki I Selektsii, 2020, 23, 958-963.	1.1	1
27	In vitro Conservation Technique for Russian Citrus limon. Agricultural Research, 2014, 3, 279-283.	1.7	0
28	IRAP-analysis for evaluating the genetic stability of endemic and endangered species of the Western Caucasus flora in the collection in vitro. Vavilovskii Zhurnal Genetiki I Selektsii, 2019, 23, 8-14.	1.1	0
29	Adaptation of Hydrangea macrophylla regenerants to non-sterile ex vitro conditions. Horticulture and Viticulture, 2020, , 12-17.	0.3	0