
Orieta Celiku

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2633906/publications.pdf Version: 2024-02-01

ODIETA CELIKII

#	Article	IF	CITATIONS
1	Evolution styles: Foundations and tool support for software architecture evolution. , 2009, , .		63
2	Targeting IDH1-Mutated Malignancies with NRF2 Blockade. Journal of the National Cancer Institute, 2019, 111, 1033-1041.	3.0	61
3	Mitochondrial NIX Promotes Tumor Survival in the Hypoxic Niche of Glioblastoma. Cancer Research, 2019, 79, 5218-5232.	0.4	57
4	Visualizing Molecular Profiles of Glioblastoma with GBM-BioDP. PLoS ONE, 2014, 9, e101239.	1.1	52
5	Targeting <i>MPS1</i> Enhances Radiosensitization of Human Glioblastoma by Modulating DNA Repair Proteins. Molecular Cancer Research, 2015, 13, 852-862.	1.5	50
6	Novel Targeting of Transcription and Metabolism in Glioblastoma. Clinical Cancer Research, 2018, 24, 1124-1137.	3.2	45
7	IDH1 mutations induce organelle defects via dysregulated phospholipids. Nature Communications, 2021, 12, 614.	5.8	44
8	Metabolic reprogramming associated with aggressiveness occurs in the G-CIMP-high molecular subtypes of IDH1mut lower grade gliomas. Neuro-Oncology, 2020, 22, 480-492.	0.6	31
9	Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget, 2017, 8, 14860-14875.	0.8	30
10	mTORC2/Rac1 Pathway Predisposes Cancer Aggressiveness in IDH1-Mutated Glioma. Cancers, 2020, 12, 787.	1.7	22
11	Computational modeling demonstrates that glioblastoma cells can survive spatial environmental challenges through exploratory adaptation. Nature Communications, 2019, 10, 5704.	5.8	21
12	Metabolic plasticity of IDH1-mutant glioma cell lines is responsible for low sensitivity to glutaminase inhibition. Cancer & Metabolism, 2020, 8, 23.	2.4	14
13	Sphingolipid Pathway as a Source of Vulnerability in IDH1mut Glioma. Cancers, 2020, 12, 2910.	1.7	13
14	Living with a central nervous system (CNS) tumor: findings on long-term survivorship from the NIH Natural History Study. Neuro-Oncology Practice, 2021, 8, 460-474.	1.0	12
15	A Single-Organelle Optical Omics Platform for Cell Science and Biomarker Discovery. Analytical Chemistry, 2021, 93, 8281-8290.	3.2	11
16	Association of Circadian Clock Gene Expression with Glioma Tumor Microenvironment and Patient Survival. Cancers, 2021, 13, 2756.	1.7	9
17	Molecularly Targeted Clinical Trials. Neurosurgery Clinics of North America, 2021, 32, 191-210.	0.8	7
18	Computational analysis of the mesenchymal signature landscape in gliomas. BMC Medical Genomics, 2017, 10, 13.	0.7	3

Orieta Celiku

#	Article	IF	CITATIONS
19	Theorem Prover Support for Precondition and Correctness Calculation. Lecture Notes in Computer Science, 2002, , 299-310.	1.0	2
20	Quantitative Temporal Logic Mechanized in HOL. Lecture Notes in Computer Science, 2005, , 439-453.	1.0	2
21	CBIO-01. TRANSCRIPTIONAL MODULATION OF BRACHYURY IN CHORDOMA. Neuro-Oncology, 2017, 19, vi32-vi33.	0.6	1
22	INNV-41. MY STORI A SYMPTOM TRACKING AND REPORTING INSTRUMENT MOBILE APPLICATION FOR CENTRAL NERVOUS SYSTEM CANCER PATIENTS. Neuro-Oncology, 2018, 20, vi146-vi146.	0.6	1
23	CADD-09. TARGETING Nrf2 ANTIOXIDATIVE PATHWAY AS A NOVEL THERAPEUTIC STRATEGY FOR <i>IDH1</i> -MUTATED CANCERS. Neuro-Oncology, 2018, 20, vi278-vi278.	0.6	1
24	Accrual and access to neuro-oncology trials in the United States. Neuro-Oncology Advances, 2022, 4, vdac048.	0.4	1
25	Using Medical Devices to Teach Formal Modeling. , 2007, , .		0
26	METB-03. DISABLED CELL DENSITY SENSING BY TUMOR SUPPRESSORS LEADS TO DYSREGULATED CHOLESTEROL SYNTHESIS IN GLIOBLASTOMA. Neuro-Oncology, 2016, 18, vi100-vi100.	0.6	0
27	MPTH-37. COMPUTATIONAL MODELING APPROACH IN DERIVING AÂMESENCHYMAL TRANSITION LANDSCAPE IN LOW GRADE AND HIGH GRADE GLIOMAS. Neuro-Oncology, 2016, 18, vi114-vi114.	0.6	0
28	Deciphering the Molecular Mechanism Underlying Transformation of Glioblastoma Into Gliosarcoma and Osteosarcoma. Cancer Genetics, 2017, 214-215, 47-48.	0.2	0
29	EXTH-62. TG02, AÂNOVEL TARGETING OF TRANSCRIPTION AND METABOLISM IN GLIOBLASTOMA. Neuro-Oncology, 2017, 19, vi86-vi86.	0.6	0
30	CBIO-11. UPREGULATION OF THE TGF-Î ² PATHWAY DRIVES TRANSFORMATION OF GLIOBLASTOMA INTO GLIOSARCOMA AND OSTEOSARCOMA. Neuro-Oncology, 2017, 19, vi35-vi35.	0.6	0
31	METB-16. ACQUISITION OF WARBURG PHENOTYPE IN IDH1-MUTATED GLIOMA AS AÂMECHANISM OF MALIGNANT TRANSFORMATION. Neuro-Oncology, 2017, 19, vi131-vi132.	0.6	0
32	COMP-08. SURVIVING BY EXPLORING: COULD GLIOBLASTOMA CELLS FOLLOW THE THEORY OF EXPLORATORY ADAPTATION?. Neuro-Oncology, 2018, 20, vi65-vi65.	0.6	0
33	CBMT-42. LOSS OF PROMOTER METHYLATION IN GLYCOLYTIC GENES IS ASSOCIATED WITH AGGRESSIVENESS IN IDH1-MUTANT LOWER GRADE GLIOMAS. Neuro-Oncology, 2018, 20, vi41-vi42.	0.6	0
34	EXTH-04. BLOCKADE OF NRF2/GLUTATHIONE METABOLISM AS A SYNTHETIC LETHALITY APPROACH FOR IDH1-MUTATED GLIOMA. Neuro-Oncology, 2019, 21, vi83-vi83.	0.6	0
35	DDRE-20. TARGETING SPHINGOLIPID PATHWAY REVEALS VULNERABILITY IN IDH1MUT GLIOMA. Neuro-Oncology Advances, 2021, 3, i10-i10.	0.4	0
36	TBMT-02. APOLLO: RAMAN-BASED PATHOLOGY OF MALIGNANT GLIOMA. Neuro-Oncology Advances, 2021, 3, i20-i20.	0.4	0

#	Article	IF	CITATIONS
37	StRAP: An Integrated Resource for Profiling High-Throughput Cancer Genomic Data from Stress Response Studies. PLoS ONE, 2012, 7, e51693.	1.1	Ο
38	Abstract 3116: Dysregulated cholesterol synthesis is a therapeutic vulnerability in glioblastoma. , 2017, , ,		0
39	Abstract 4418: Enhanced endocytosis as a metabolic detour for cancer cells. , 2017, , .		Ο
40	Abstract 114: TG02 induces cell cycle arrest in glioblastoma. , 2017, , .		0