Daiana A Capdevila

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2633904/publications.pdf

Version: 2024-02-01

23 1,168 18 23
papers citations h-index g-index

30 30 30 1498 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Bacterial Transcriptional Regulators: A Road Map for Functional, Structural, and Biophysical Characterization. International Journal of Molecular Sciences, 2022, 23, 2179.	4.1	8
2	Protocol for using organic persulfides to measure the chemical reactivity of persulfide sensors. STAR Protocols, 2022, 3, 101424.	1.2	6
3	Structural basis for persulfide-sensing specificity in a transcriptional regulator. Nature Chemical Biology, 2021, 17, 65-70.	8.0	24
4	Molecular Evolution of Transition Metal Bioavailability at the Host–Pathogen Interface. Trends in Microbiology, 2021, 29, 441-457.	7.7	32
5	Metal Ion Homeostasis. , 2021, , 929-953.		1
6	Functional asymmetry and chemical reactivity of CsoR family persulfide sensors. Nucleic Acids Research, 2021, 49, 12556-12576.	14.5	13
7	Cell-free biosensors for rapid detection of water contaminants. Nature Biotechnology, 2020, 38, 1451-1459.	17.5	221
8	Multi-metal nutrient restriction and crosstalk in metallostasis systems in microbial pathogens. Current Opinion in Microbiology, 2020, 55, 17-25.	5.1	26
9	Mechanistic Insights into the Metal-Dependent Activation of Zn ^{II} -Dependent Metallochaperones. Inorganic Chemistry, 2019, 58, 13661-13672.	4.0	26
10	A Mn-sensing riboswitch activates expression of a Mn2+/Ca2+ ATPase transporter in Streptococcus. Nucleic Acids Research, 2019, 47, 6885-6899.	14.5	40
11	Metal-dependent allosteric activation and inhibition on the same molecular scaffold: theÂcopper sensor CopY from <i>Streptococcus pneumoniae</i>). Chemical Science, 2018, 9, 105-118.	7.4	27
12	Functional Role of Solvent Entropy and Conformational Entropy of Metal Binding in a Dynamically Driven Allosteric System. Journal of the American Chemical Society, 2018, 140, 9108-9119.	13.7	26
13	Tuning site-specific dynamics to drive allosteric activation in a pneumococcal zinc uptake regulator. ELife, 2018, 7, .	6.0	26
14	Entropy redistribution controls allostery in a metalloregulatory protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4424-4429.	7.1	75
15	Metallochaperones and metalloregulation in bacteria. Essays in Biochemistry, 2017, 61, 177-200.	4.7	103
16	Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface. Journal of Biological Chemistry, 2016, 291, 20858-20868.	3.4	131
17	Alternative Conformations of Cytochrome <i>c</i> : Structure, Function, and Detection. Biochemistry, 2016, 55, 407-428.	2.5	110
18	Active Site Structure and Peroxidase Activity of Oxidatively Modified Cytochrome <i>c</i> Species in Complexes with Cardiolipin. Biochemistry, 2015, 54, 7491-7504.	2.5	53

#	Article	IF	CITATIONS
19	Specific methionine oxidation of cytochrome c in complexes with zwitterionic lipids by hydrogen peroxide: potential implications for apoptosis. Chemical Science, 2015, 6, 705-713.	7.4	52
20	Coupling of tyrosine deprotonation and axial ligand exchange in nitrocytochrome c. Chemical Communications, 2014, 50, 2592-2594.	4.1	21
21	Self-Assembled Monolayers of NH ₂ -Terminated Thiolates: Order, p <i>K</i> _a , and Specific Adsorption. Langmuir, 2013, 29, 5351-5359.	3. 5	54
22	Phosphate mediated adsorption and electron transfer of cytochrome c. A time-resolved SERR spectroelectrochemical study. Physical Chemistry Chemical Physics, 2013, 15, 5386-5394.	2.8	28
23	The mechanism of the photochromic transformation of spirorhodamines. Photochemical and Photobiological Sciences, 2012, 11, 1081.	2.9	43