De-Yi Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2633668/publications.pdf Version: 2024-02-01

		12322	31818
249	13,941	69	101
papers	citations	h-index	g-index
252	252	252	7386
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carbon-family materials for flame retardant polymeric materials. Progress in Polymer Science, 2017, 69, 22-46.	11.8	406
2	Highly thermally conductive flame-retardant epoxy nanocomposites with reduced ignitability and excellent electrical conductivities. Composites Science and Technology, 2017, 139, 83-89.	3.8	356
3	Synergistic effect of ammonium polyphosphate and layered double hydroxide on flame retardant properties of poly(vinyl alcohol). Polymer Degradation and Stability, 2008, 93, 1323-1331.	2.7	221
4	A sustainable, eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability: Synthesis, curing kinetics and structure–property relationship. Chemical Engineering Journal, 2016, 284, 1080-1093.	6.6	218
5	Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. Journal of Materials Chemistry A, 2015, 3, 6819-6826.	5.2	215
6	A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. Journal of Materials Chemistry A, 2015, 3, 21907-21921.	5.2	209
7	Simultaneously improving the fire safety and mechanical properties of epoxy resin with Fe-CNTs <i>via</i> large-scale preparation. Journal of Materials Chemistry A, 2018, 6, 6376-6386.	5.2	183
8	Preparation and burning behaviors of flame retarding biodegradable poly(lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polymer Degradation and Stability, 2010, 95, 2474-2480.	2.7	181
9	Renewable Cardanol-Based Surfactant Modified Layered Double Hydroxide as a Flame Retardant for Epoxy Resin. ACS Sustainable Chemistry and Engineering, 2015, 3, 3281-3290.	3.2	174
10	Few layered Co(OH) ₂ ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chemistry, 2016, 18, 3066-3074.	4.6	171
11	A flame-retardant epoxy resin based on a reactive phosphorus-containing monomer of DODPP and its thermal and flame-retardant properties. Polymer Degradation and Stability, 2008, 93, 1308-1315.	2.7	167
12	Ultrastiff Biobased Epoxy Resin with High <i>T</i> _g and Low Permittivity: From Synthesis to Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 2869-2880.	3.2	161
13	Fire retardancy of a reactively extruded intumescent flame retardant polyethylene system enhanced by metal chelates. Polymer Degradation and Stability, 2007, 92, 1592-1598.	2.7	157
14	Metal compound-enhanced flame retardancy of intumescent epoxy resins containing ammonium polyphosphate. Polymer Degradation and Stability, 2009, 94, 625-631.	2.7	154
15	Synthesis of Organo Cobaltâ~'Aluminum Layered Double Hydroxide via a Novel Single-Step Self-Assembling Method and Its Use as Flame Retardant Nanofiller in PP. Langmuir, 2010, 26, 14162-14169.	1.6	153
16	Flame-retardant and anti-dripping effects of a novel char-forming flame retardant for the treatment of poly(ethylene terephthalate) fabrics. Polymer Degradation and Stability, 2005, 88, 349-356.	2.7	147
17	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Composites Science and Technology, 2018, 154, 136-144.	3.8	146
18	Flame-Retardant Effect of Sepiolite on an Intumescent Flame-Retardant Polypropylene System. Industrial & Engineering Chemistry Research, 2011, 50, 2047-2054.	1.8	142

#	Article	IF	CITATIONS
19	Multifunctional intercalation in layered double hydroxide: toward multifunctional nanohybrids for epoxy resin. Journal of Materials Chemistry A, 2016, 4, 2147-2157.	5.2	131
20	One-Step Synthesis of Organic LDH and Its Comparison with Regeneration and Anion Exchange Method. Chemistry of Materials, 2009, 21, 4490-4497.	3.2	124
21	A novel phosphorus-containing poly(lactic acid) toward its flame retardation. Polymer, 2011, 52, 233-238.	1.8	123
22	Biobased Epoxy Resin with Low Electrical Permissivity and Flame Retardancy: From Environmental Friendly High-Throughput Synthesis to Properties. ACS Sustainable Chemistry and Engineering, 2018, 6, 8856-8867.	3.2	119
23	A novel charring agent containing caged bicyclic phosphate and its application in intumescent flame retardant polypropylene systems. Journal of Industrial and Engineering Chemistry, 2008, 14, 589-595.	2.9	117
24	A method for simultaneously improving the flame retardancy and toughness of PLA. Polymers for Advanced Technologies, 2011, 22, 2295-2301.	1.6	117
25	New Superefficiently Flame-Retardant Bioplastic Poly(lactic acid): Flammability, Thermal Decomposition Behavior, and Tensile Properties. ACS Sustainable Chemistry and Engineering, 2016, 4, 202-209.	3.2	111
26	Effect of phosphorus-containing inorganic–organic hybrid coating on the flammability of cotton fabrics: Synthesis, characterization and flammability. Chemical Engineering Journal, 2016, 294, 167-175.	6.6	108
27	Polydopamine induced natural fiber surface functionalization: a way towards flame retardancy of flax/poly(lactic acid) biocomposites. Composites Part B: Engineering, 2018, 154, 56-63.	5.9	108
28	Intumescent multilayer hybrid coating for flame retardant cotton fabrics based on layer-by-layer assembly and sol–gel process. RSC Advances, 2015, 5, 10647-10655.	1.7	107
29	Synthesis of a novel dual layered double hydroxide hybrid nanomaterial and its application in epoxy nanocomposites. Chemical Engineering Journal, 2020, 381, 122777.	6.6	106
30	Green Synthesis of Biomass Phytic Acid-Functionalized UiO-66-NH ₂ Hierarchical Hybrids toward Fire Safety of Epoxy Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 994-1003.	3.2	106
31	A New Approach to Reducing the Flammability of Layered Double Hydroxide (LDH)-Based Polymer Composites: Preparation and Characterization of Dye Structure-Intercalated LDH and Its Effect on the Flammability of Polypropylene-Grafted Maleic Anhydride/d-LDH Composites. ACS Applied Materials & amp: Interfaces. 2013. 5. 8991-8997.	4.0	104
32	Polyamideâ€enhanced flame retardancy of ammonium polyphosphate on epoxy resin. Journal of Applied Polymer Science, 2008, 108, 2644-2653.	1.3	103
33	Synthesis and characterization of functional eugenol derivative based layered double hydroxide and its use as a nanoflame-retardant in epoxy resin. Journal of Materials Chemistry A, 2015, 3, 3471-3479.	5.2	103
34	Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Progress in Polymer Science, 2020, 108, 101287.	11.8	102
35	Ultrafine nickel nanocatalyst-engineering of an organic layered double hydroxide towards a super-efficient fire-safe epoxy resin <i>via</i> interfacial catalysis. Journal of Materials Chemistry A, 2018, 6, 8488-8498.	5.2	101
36	Preparation of zinc oxide free, transparent rubber nanocomposites using a layered double hydroxide filler. Journal of Materials Chemistry, 2011, 21, 7194.	6.7	100

#	Article	IF	CITATIONS
37	Preparation and characterisation of a novel fire retardant PET/α-zirconium phosphate nanocomposite. Polymer Degradation and Stability, 2009, 94, 544-549.	2.7	99
38	Char-forming mechanism of a novel polymeric flame retardant with char agent. Polymer Degradation and Stability, 2007, 92, 1046-1052.	2.7	98
39	Preparation and investigation of the combustion behavior of polypropylene/organomodified MgAl-LDH micro-nanocomposite. Journal of Alloys and Compounds, 2011, 509, 3497-3501.	2.8	97
40	Core-shell flame retardant/graphene oxide hybrid: a self-assembly strategy towards reducing fire hazard and improving toughness of polylactic acid. Composites Science and Technology, 2018, 165, 161-167.	3.8	97
41	Thermal oxidative degradation behaviours of flame-retardant copolyesters containing phosphorous linked pendent group/montmorillonite nanocomposites. Polymer Degradation and Stability, 2005, 87, 171-176.	2.7	96
42	Effect of a phosphorus-containing flame retardant on the thermal properties and ease of ignition of poly(lactic acid). Polymer Degradation and Stability, 2011, 96, 1557-1561.	2.7	96
43	Bioinspired iron-loaded polydopamine nanospheres as green flame retardants for epoxy resin <i>via</i> free radical scavenging and catalytic charring. Journal of Materials Chemistry A, 2020, 8, 2529-2538.	5.2	94
44	Constructing multifunctional nanofiller with reactive interface in PLA/CB-g-DOPO composites for simultaneously improving flame retardancy, electrical conductivity and mechanical properties. Composites Science and Technology, 2020, 188, 107988.	3.8	94
45	A novel efficient halogen-free flame retardant system for polycarbonate. Polymer Degradation and Stability, 2011, 96, 320-327.	2.7	93
46	Structural characteristics and flammability of fire retarding EPDM/layered double hydroxide (LDH) nanocomposites. RSC Advances, 2012, 2, 3927.	1.7	91
47	Bimetallic metal-organic frameworks and graphene oxide nano-hybrids for enhanced fire retardant epoxy composites: A novel carbonization mechanism. Carbon, 2019, 153, 407-416.	5.4	91
48	Facile fabrication of biobased P N C-containing nano-layered hybrid: Preparation, growth mechanism and its efficient fire retardancy in epoxy. Polymer Degradation and Stability, 2019, 159, 153-162.	2.7	91
49	Understanding the reinforcing behavior of expanded clay particles in natural rubber compounds. Soft Matter, 2013, 9, 3798.	1.2	90
50	Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Advances, 2016, 6, 59226-59236.	1.7	89
51	Ultrathin iron phenyl phosphonate nanosheets with appropriate thermal stability for improving fire safety in epoxy. Composites Science and Technology, 2019, 182, 107748.	3.8	88
52	Effect of metal chelates on the ignition and early flaming behaviour of intumescent fire-retarded polyethylene systems. Polymer Degradation and Stability, 2008, 93, 1024-1030.	2.7	87
53	Structure–Property Relationships of Nanocomposites Based on Polypropylene and Layered Double Hydroxides. Macromolecules, 2011, 44, 4342-4354.	2.2	87
54	Interfacial growth of MOF-derived layered double hydroxide nanosheets on graphene slab towards fabrication of multifunctional epoxy nanocomposites. Chemical Engineering Journal, 2017, 330, 1222-1231.	6.6	84

#	Article	IF	CITATIONS
55	Organically modified rectorite toughened poly(lactic acid): Nanostructures, crystallization and mechanical properties. European Polymer Journal, 2009, 45, 2996-3003.	2.6	83
56	The synergistic flameâ€retardant effect of Oâ€MMT on the intumescent flameâ€retardant PP/CA/APP systems. Polymers for Advanced Technologies, 2010, 21, 789-796.	1.6	83
57	Role of lignin nanoparticles in UV resistance, thermal and mechanical performance of PMMA nanocomposites prepared by a combined free-radical graft polymerization/masterbatch procedure. Composites Part A: Applied Science and Manufacturing, 2018, 107, 61-69.	3.8	83
58	Synthesis of organo-modified α-zirconium phosphate and its effect on the flame retardancy of IFR poly(lactic acid) systems. Polymer Degradation and Stability, 2011, 96, 771-777.	2.7	82
59	Bio-based barium alginate film: Preparation, flame retardancy and thermal degradation behavior. Carbohydrate Polymers, 2016, 139, 106-114.	5.1	82
60	Kinetics of thermal degradation of flame retardant copolyesters containing phosphorus linked pendent groups. Polymer Degradation and Stability, 2003, 80, 135-140.	2.7	81
61	Modeling Lightning Impact Thermo-Mechanical Damage on Composite Materials. Applied Composite Materials, 2014, 21, 149-164.	1.3	80
62	Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Composites Part B: Engineering, 2018, 138, 101-112.	5.9	79
63	Influence of eco-friendly calcium gluconate on the intumescent flame-retardant epoxy resin: Flame retardancy, smoke suppression and mechanical properties. Composites Part B: Engineering, 2019, 176, 107200.	5.9	78
64	Large-scale converting waste coffee grounds into functional carbon materials as high-efficient adsorbent for organic dyes. Bioresource Technology, 2019, 272, 92-98.	4.8	78
65	Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Composites Part B: Engineering, 2022, 233, 109663.	5.9	78
66	Size tailored bimetallic metal-organic framework (MOF) on graphene oxide with sandwich-like structure as functional nano-hybrids for improving fire safety of epoxy. Composites Part B: Engineering, 2020, 188, 107881.	5.9	77
67	An in situ polymerization approach for functionalized MoS ₂ /nylon-6 nanocomposites with enhanced mechanical properties and thermal stability. Journal of Materials Chemistry A, 2015, 3, 24112-24120.	5.2	75
68	Synthesis of a Fe ₃ O ₄ Nanosphere@Mg–Al Layered-Double-Hydroxide Hybrid and Application in the Fabrication of Multifunctional Epoxy Nanocomposites. Industrial & Engineering Chemistry Research, 2016, 55, 6634-6642.	1.8	73
69	Nickel Metal–Organic Framework Derived Hierarchically Mesoporous Nickel Phosphate toward Smoke Suppression and Mechanical Enhancement of Intumescent Flame Retardant Wood Fiber/Poly(lactic) Tj ETQq1 1 (). 784 314	rg ₿3 /Overlo
70	Effect of Cu-doped graphene on the flammability and thermal properties of epoxy composites. Composites Part B: Engineering, 2016, 89, 108-116.	5.9	72
71	Simultaneous Improvement of Mechanical and Fire-Safety Properties of Polymer Composites with Phosphonate-Loaded MOF Additives. ACS Applied Materials & amp; Interfaces, 2019, 11, 20325-20332.	4.0	71
72	A Novel Phosphorus-Containing Poly(ethylene terephthalate) Nanocomposite with Both Flame Retardancy and Anti-Dripping Effects. Macromolecular Materials and Engineering, 2006, 291, 638-645.	1.7	70

#	Article	IF	CITATIONS
73	Combined effects of ammonium polyphosphate and talc on the fire and mechanical properties of epoxy/glass fabric composites. Composites Part B: Engineering, 2017, 113, 381-390.	5.9	70
74	Comparison of thermal and dielectric spectroscopy for nanocomposites based on polypropylene and Layered Double Hydroxide – Proof of interfaces. European Polymer Journal, 2014, 55, 48-56.	2.6	69
75	Bioinspired polydopamine-induced assembly of ultrafine Fe(OH) ₃ nanoparticles on halloysite toward highly efficient fire retardancy of epoxy resin via an action of interfacial catalysis. Polymer Chemistry, 2017, 8, 3926-3936.	1.9	69
76	Organophosphorus heteroaromatic compound towards mechanically reinforced and low-flammability epoxy resin. Composites Part B: Engineering, 2019, 168, 458-466.	5.9	69
77	A strategy to construct multifunctional ammonium polyphosphate for epoxy resin with simultaneously high fire safety and mechanical properties. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106529.	3.8	67
78	Preparation and flammability of a novel intumescent flame-retardant poly(ethylene-co-vinyl acetate) system. Polymer Degradation and Stability, 2008, 93, 2186-2192.	2.7	65
79	Thermal degradation behaviors of a novel nanocomposite based on polypropylene and Co–Al layered double hydroxide. Polymer Degradation and Stability, 2011, 96, 285-290.	2.7	65
80	Confined Dispersion of Zinc Hydroxystannate Nanoparticles into Layered Bimetallic Hydroxide Nanocapsules and Its Application in Flame-Retardant Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2019, 11, 40951-40960.	4.0	65
81	An eco-friendly way to fire retardant flexible polyurethane foam: layer-by-layer assembly of fully bio-based substances. RSC Advances, 2014, 4, 46164-46169.	1.7	64
82	A novel intumescent flame-retardant system containing metal chelates for polyvinyl alcohol. Polymer Degradation and Stability, 2007, 92, 1555-1564.	2.7	63
83	Comparative study of the synergistic effect of binary and ternary LDH with intumescent flame retardant on the properties of polypropylene composites. RSC Advances, 2015, 5, 78979-78985.	1.7	63
84	A novel oligomer containing DOPO and ferrocene groups: Synthesis, characterization, and its application in fire retardant epoxy resin. Polymer Degradation and Stability, 2018, 156, 111-124.	2.7	63
85	Synthesis of aromatic–aliphatic polyamide acting as adjuvant in polylactic acid (PLA)/ammonium polyphosphate (APP) system. Polymer Degradation and Stability, 2013, 98, 1036-1042.	2.7	61
86	Bio-based nickel alginate and copper alginate films with excellent flame retardancy: preparation, flammability and thermal degradation behavior. RSC Advances, 2015, 5, 64125-64137.	1.7	61
87	A novel phosphorus-containing copolyester/montmorillonite nanocomposites with improved flame retardancy. European Polymer Journal, 2007, 43, 2882-2890.	2.6	60
88	Inclusion complex between beta-cyclodextrin and phenylphosphonicdiamide as novel bio-based flame retardant to epoxy: Inclusion behavior, characterization and flammability. Materials and Design, 2017, 114, 623-632.	3.3	60
89	Structure–property relationships of nanocomposites based on polylactide and MgAl layered double hydroxides. European Polymer Journal, 2015, 68, 338-354.	2.6	59
90	Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins. Composites Part B: Engineering, 2019, 175, 107189.	5.9	59

#	Article	IF	CITATIONS
91	Flame-retardant wood polymer composites (WPCs) as potential fire safe bio-based materials for building products: Preparation, flammability and mechanical properties. Fire Safety Journal, 2019, 107, 210-216.	1.4	59
92	Dry synthesis of mesoporous nanosheet assembly constructed by cyclomatrix polyphosphazene frameworks and its application in flame retardant polypropylene. Chemical Engineering Journal, 2020, 395, 125076.	6.6	59
93	Interfacial engineering of layered double hydroxide toward epoxy resin with improved fire safety and mechanical property. Composites Part B: Engineering, 2018, 152, 336-346.	5.9	58
94	Rationally designed zinc borate@ZIF-8 core-shell nanorods for curing epoxy resins along with low flammability and high mechanical property. Composites Part B: Engineering, 2020, 200, 108349.	5.9	58
95	Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chemical Engineering Journal, 2021, 414, 128702.	6.6	58
96	Effect of manganese and cobalt ions on flame retardancy and thermal degradation of bio-based alginate films. Journal of Materials Science, 2016, 51, 1052-1065.	1.7	57
97	Synthesis of functionalized α-zirconium phosphate modified with intumescent flame retardant and its application in poly(lactic acid). Polymer Degradation and Stability, 2013, 98, 1731-1737.	2.7	56
98	A facile and robust route to polyvinyl alcohol-based triboelectric nanogenerator containing flame-retardant polyelectrolyte with improved output performance and fire safety. Nano Energy, 2021, 81, 105656.	8.2	56
99	Rubber–Clay Nanocomposites: Some Recent Results. Advances in Polymer Science, 2010, , 85-166.	0.4	55
100	Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polymer Degradation and Stability, 2014, 110, 137-148.	2.7	55
101	A novel intumescent flameâ€retardant LDPE system and its thermoâ€oxidative degradation and flameâ€retardant mechanisms. Polymers for Advanced Technologies, 2008, 19, 1566-1575.	1.6	54
102	Crystallization behavior of nanocomposites based on poly(l-lactide) and MgAl layered double hydroxides – Unbiased determination of the rigid amorphous phases due to the crystals and the nanofiller. Polymer, 2017, 108, 257-264.	1.8	54
103	Bio-based layered double hydroxide nanocarrier toward fire-retardant epoxy resin with efficiently improved smoke suppression. Chemical Engineering Journal, 2019, 378, 122046.	6.6	54
104	Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Industrial Crops and Products, 2019, 130, 301-309.	2.5	54
105	In-situ coprecipitation formed Fe/Zn-layered double hydroxide/ammonium polyphosphate hybrid material for flame retardant epoxy resin via synergistic catalytic charring. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106841.	3.8	54
106	A novel method for preparing poly(ethylene terephthalate)/BaSO4 nanocomposites. European Polymer Journal, 2005, 41, 2569-2574.	2.6	53
107	Synergistic Effect of Carbon Nanotube and Polyethersulfone on Flame Retardancy of Carbon Fiber Reinforced Epoxy Composites. Industrial & Engineering Chemistry Research, 2014, 53, 1040-1047.	1.8	53
108	Phosphorusâ€containing telechelic polyesterâ€based ionomer: Facile synthesis and antidripping effects. Journal of Polymer Science Part A, 2008, 46, 2994-3006.	2.5	51

#	Article	IF	CITATIONS
109	Natural halloysite nanotube based functionalized nanohybrid assembled via phosphorus-containing slow release method: A highly efficient way to impart flame retardancy to polylactide. European Polymer Journal, 2017, 93, 458-470.	2.6	51
110	Influence of the Characteristics of Expandable Graphite on the Morphology, Thermal Properties, Fire Behaviour and Compression Performance of a Rigid Polyurethane Foam. Polymers, 2019, 11, 168.	2.0	50
111	Effect of phytic acid–modified layered double hydroxide on flammability and mechanical properties of intumescent flame retardant polypropylene system. Fire and Materials, 2018, 42, 213-220.	0.9	49
112	Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chemical Engineering Journal, 2020, 400, 125942.	6.6	49
113	Renewable vanillin based flame retardant for poly(lactic acid): a way to enhance flame retardancy and toughness simultaneously. RSC Advances, 2018, 8, 42189-42199.	1.7	48
114	A bimetallic MOF@graphene oxide composite as an efficient bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Dalton Transactions, 2020, 49, 5730-5735.	1.6	48
115	Inherent flame retardation of bio-based poly(lactic acid) by incorporating phosphorus linked pendent group into the backbone. Polymer Degradation and Stability, 2011, 96, 1669-1675.	2.7	47
116	Influence of phenylphosphonate based flame retardant on epoxy/glass fiber reinforced composites (GRE): Flammability, mechanical and thermal stability properties. Composites Part B: Engineering, 2017, 110, 511-519.	5.9	47
117	Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin. Polymer Degradation and Stability, 2018, 157, 119-130.	2.7	47
118	Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials. Nano-Micro Letters, 2020, 12, 173.	14.4	47
119	Hierarchical nanoporous silica doped with tin as novel multifunctional hybrid material to flexible poly(vinyl chloride) with greatly improved flame retardancy and mechanical properties. Chemical Engineering Journal, 2016, 295, 451-460.	6.6	45
120	Polymer-based ceramifiable composites for flame retardant applications: A review. Composites Communications, 2020, 21, 100405.	3.3	45
121	Effect of reactive time on flame retardancy and thermal degradation behavior of bio-based zinc alginate film. Polymer Degradation and Stability, 2016, 127, 20-31.	2.7	44
122	Bio-based rigid polyurethane foam from castor oil with excellent flame retardancy and high insulation capacity via cooperation with carbon-based materials. Journal of Materials Science, 2021, 56, 2684-2701.	1.7	44
123	Crystallization and morphology of a novel biodegradable polymer system: poly(1,4-dioxan-2-one)/starch blends. Acta Materialia, 2004, 52, 4899-4905.	3.8	42
124	Novel Flame-Retardant and Antidripping Branched Polyesters Prepared via Phosphorus-Containing Ionic Monomer as End-Capping Agent. Industrial & Engineering Chemistry Research, 2010, 49, 4190-4196.	1.8	42
125	Poly(vinyl alcohol)/Ammonium Polyphosphate Systems Improved Simultaneously Both Fire Retardancy and Mechanical Properties by Montmorillonite. Industrial & Engineering Chemistry Research, 2011, 50, 9998-10005.	1.8	42
126	Method for Simultaneously Improving the Thermal Stability and Mechanical Properties of Poly(lactic) Tj ETQq0 0 C) rgBT /Ov 1.6	verlock 10 Tf 42

#	Article	IF	CITATIONS
127	One-step hydrothermal synthesis of nano zinc carbonate and its use as a promising substitute for antimony trioxide in flame retardant flexible poly(vinyl chloride). RSC Advances, 2015, 5, 27837-27843.	1.7	41
128	Sustainable, Biobased Silicone with Layered Double Hydroxide Hybrid and Their Application in Natural-Fiber Reinforced Phenolic Composites with Enhanced Performance. ACS Sustainable Chemistry and Engineering, 2016, 4, 3113-3121.	3.2	41
129	Synthesis, characterization and properties of novel aliphatic–aromatic polyamide/functional carbon nanotube nanocomposites via in situ polymerization. RSC Advances, 2013, 3, 20738.	1.7	40
130	Arrangement of layered double hydroxide in a polyethylene matrix studied by a combination of complementary methods. Polymer, 2012, 53, 2245-2254.	1.8	38
131	A sustainable approach to scalable production of a graphene based flame retardant using waste fish deoxyribonucleic acid. Journal of Cleaner Production, 2020, 247, 119150.	4.6	38
132	A green functional nanohybrid: preparation, characterization and properties of a β-cyclodextrin based functional layered double hydroxide. Journal of Materials Chemistry A, 2013, 1, 11376.	5.2	37
133	Construction of chelation structure between Ca2+ and starch via reactive extrusion for improving the performances of thermoplastic starch. Composites Science and Technology, 2018, 159, 59-69.	3.8	37
134	Interfacial engineering of renewable metal organic framework derived honeycomb-like nanoporous aluminum hydroxide with tunable porosity. Chemical Science, 2017, 8, 3399-3409.	3.7	36
135	Effect of nitrogen and oxygen doped carbon nanotubes on flammability of epoxy nanocomposites. Carbon, 2017, 121, 193-200.	5.4	36
136	A facile approach towards large-scale synthesis of hierarchically nanoporous SnO2@Fe2O3 0D/1D hybrid and its effect on flammability, thermal stability and mechanical property of flexible poly(vinyl) Tj ETQq0 0 () r g₿ T /Ov	er koc k 10 Tf
137	Recyclable flame-retardant epoxy composites based on disulfide bonds: Flammability and recyclability. Composites Communications, 2021, 25, 100754.	3.3	36
138	Comparative study on synergistic effect of LDH and zirconium phosphate with aluminum trihydroxide on flame retardancy of EVA composites. Journal of Thermal Analysis and Calorimetry, 2015, 121, 619-626.	2.0	35
139	Synergistic effect of expandable graphite and phenylphosphonic-aniline salt on flame retardancy of rigid polyurethane foam. Polymer Degradation and Stability, 2020, 179, 109274.	2.7	34
140	Thermal oxidative degradation kinetics of novel intumescent flame-retardant polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2015, 120, 1183-1191.	2.0	33
141	Effect of N,N′-diallyl-phenylphosphoricdiamide on ease of ignition, thermal decomposition behavior and mechanical properties of poly (lactic acid). Polymer Degradation and Stability, 2016, 127, 2-10.	2.7	33
142	Delamination and Engineered Interlayers of Ti ₃ C ₂ MXenes using Phosphorous Vapor toward Flame-Retardant Epoxy Nanocomposites. ACS Applied Materials & Interfaces, 2021, 13, 48196-48207.	4.0	33
143	Surface engineering of magnesium hydroxide via bioinspired iron-loaded polydopamine as green and efficient strategy to epoxy composites with improved flame retardancy and reduced smoke release. Reactive and Functional Polymers, 2020, 155, 104690.	2.0	32
144	"Sloughing―of metal-organic framework retaining nanodots via step-by-step carving and its flame-retardant effect in epoxy resin. Chemical Engineering Journal, 2022, 448, 137666.	6.6	32

#	Article	IF	CITATIONS
145	A formaldehydeâ€free flame retardant wood particleboard system based on twoâ€component polyurethane adhesive. Journal of Applied Polymer Science, 2008, 108, 1216-1222.	1.3	31
146	Construction of a novel three-in-one biomass based intumescent fire retardant through phosphorus functionalized metal-organic framework and β-cyclodextrin hybrids in achieving fire safe epoxy. Composites Communications, 2021, 23, 100594.	3.3	31
147	Chemically inorganic modified ammonium polyphosphate as eco-friendly flame retardant and its high fire safety for epoxy resin. Composites Communications, 2021, 28, 100959.	3.3	31
148	Nano-architectured mesoporous silica decorated with ultrafine Co3O4 toward an efficient way to delaying ignition and improving fire retardancy of polystyrene. Materials and Design, 2017, 129, 69-81.	3.3	30
149	Functional organoclay with high thermal stability and its synergistic effect on intumescent flame retardant polypropylene. Applied Clay Science, 2017, 143, 192-198.	2.6	30
150	Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polymer Chemistry, 2017, 8, 6309-6318.	1.9	30
151	Polydopamine-assisted strategies for preparation of fire-safe polymeric materials: A review. European Polymer Journal, 2020, 138, 109973.	2.6	30
152	Fire-safe and environmentally friendly nanocomposites based on layered double hydroxides and ethylene propylene diene elastomer. RSC Advances, 2016, 6, 26425-26436.	1.7	29
153	Fabrication of low-fire-hazard flexible poly (vinyl chloride) via reutilization of heavy metal biosorbents. Journal of Hazardous Materials, 2017, 339, 143-153.	6.5	29
154	Basalt Fiber Modified Ethylene Vinyl Acetate/Magnesium Hydroxide Composites with Balanced Flame Retardancy and Improved Mechanical Properties. Polymers, 2020, 12, 2107.	2.0	29
155	Study of the synergistic effect of nickel phosphate nanotubes (NiPO-NT) on intumescent flame retardant polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1323-1330.	2.0	28
156	Flame retardancy and thermal degradation properties of cotton/alginate fabric. Journal of Thermal Analysis and Calorimetry, 2017, 127, 1543-1551.	2.0	28
157	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through synergistic effect of zirconium phenylphosphate and POSS. Journal of Thermal Analysis and Calorimetry, 2019, 135, 2117-2124.	2.0	28
158	Novel silicon-modified phenolic novolacs and their biofiber-reinforced composites: Preparation, characterization and performance. Composites Science and Technology, 2013, 87, 189-195.	3.8	27
159	Ferrocene-Based Nonphosphorus Copolymer: Synthesis, High-Charring Mechanism, and Its Application in Fire Retardant Epoxy Resin. Industrial & Engineering Chemistry Research, 2017, 56, 12630-12643.	1.8	27
160	Effect of intercalation of layered double hydroxides with sulfonate-containing calix[4]arenes on the flame retardancy of castor oil-based flexible polyurethane foams. Polymer Testing, 2019, 79, 106055.	2.3	27
161	Structure–Property Relationships of Nanocomposites Based on Polylactide and Layered Double Hydroxides – Comparison of MgAl and NiAl LDH as Nanofiller. Macromolecular Chemistry and Physics, 2017, 218, 1700232.	1.1	26
162	An Excellent Intrinsic Transparent Epoxy Resin with High Flame Retardancy: Synthesis, Characterization, and Properties. Macromolecular Materials and Engineering, 2019, 304, 1900254.	1.7	26

#	Article	IF	CITATIONS
163	Flammability and thermal degradation behaviors of phosphorus-containing copolyester/BaSO4 nanocomposites. Journal of Applied Polymer Science, 2006, 102, 564-570.	1.3	25
164	Influence of phenylphosphonic amide on rheological, mechanical and flammable properties of carbon fiber/RTM6 composites. Composites Part B: Engineering, 2018, 149, 74-81.	5.9	25
165	Nanocarbon-Based Flame Retardant Polymer Nanocomposites. Molecules, 2021, 26, 4670.	1.7	25
166	Preparation, fire behavior and thermal stability of a novel flame retardant polypropylene system. Journal of Thermal Analysis and Calorimetry, 2016, 125, 321-329.	2.0	24
167	Effect of Fe ₃ O ₄ â€doped sepiolite on the flammability and thermal degradation properties of epoxy composites. Polymers for Advanced Technologies, 2017, 28, 971-978.	1.6	24
168	Mesoporous metal oxide/pyrophosphate hybrid originated from reutilization of water treatment resin as a novel fire hazard suppressant. Materials Chemistry and Physics, 2018, 203, 49-57.	2.0	24
169	A novel highly-efficient bio-based fire retardant for poly (lactic acid): Synthesis, preparation, property and mechanism. Chemical Engineering Journal, 2022, 446, 137092.	6.6	24
170	Carbon Nanotube/Epoxy Composites for Improved Fire Safety. ACS Applied Nano Materials, 2020, 3, 4253-4264.	2.4	23
171	Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose, 2022, 29, 5289-5303.	2.4	23
172	Self-assembling organomodified Co/Al based layered double hydroxides (LDH) via one-step route. Transactions of Nonferrous Metals Society of China, 2009, 19, 1479-1482.	1.7	22
173	Durable flame retardant finishing of PET/cotton blends using a Novel PVAâ€based phosphorusâ€nitrogen polymer. Journal of Applied Polymer Science, 2011, 122, 342-353.	1.3	22
174	A Novel Thermotropic Elastomer based on Highlyâ€filled LDHâ€5SB Composites. Macromolecular Rapid Communications, 2012, 33, 337-342.	2.0	22
175	Bio-based semi-aromatic polyamide/functional clay nanocomposites: preparation and properties. RSC Advances, 2014, 4, 23420.	1.7	22
176	Transglutaminase catalyzed hydrolyzed wheat gliadin grafted with chitosan oligosaccharide and its characterization. Carbohydrate Polymers, 2016, 153, 105-114.	5.1	22
177	Flame Retardant Polypropylene Composites with Low Densities. Materials, 2019, 12, 152.	1.3	22
178	Quasi-solid-state sodium-ion hybrid capacitors enabled by UiO-66@PVDF-HFP multifunctional separators: Selective charge transfer and high fire safety. Chemical Engineering Journal, 2022, 427, 130919.	6.6	22
179	Double In Situ Approach for the Preparation of Polymer Nanocomposite with Multi-functionality. Nanoscale Research Letters, 2009, 4, 303-306.	3.1	21
180	Study of the Synergistic Effect of Nanoporous Nickel Phosphates on Novel Intumescent Flame Retardant Polypropylene Composites. Journal of Spectroscopy, 2015, 2015, 1-7.	0.6	21

#	Article	IF	CITATIONS
181	Effect on thermal and combustion behaviors of montmorillonite intercalation nickel compounds in polypropylene/IFR system. Polymers for Advanced Technologies, 2017, 28, 965-970.	1.6	21
182	Influence of interfaces on the crystallization behavior and the rigid amorphous phase of poly(l-lactide)-based nanocomposites with different layered doubled hydroxides as nanofiller. Polymer, 2019, 184, 121929.	1.8	21
183	Hierarchical layered double hydroxide nanosheets/phosphorus-containing organosilane functionalized hollow glass microsphere towards high performance epoxy composite: Enhanced interfacial adhesion and bottom-up charring behavior. Polymer, 2020, 210, 123018.	1.8	21
184	Novel Phosphorous-Based Deep Eutectic Solvents for the Production of Recyclable Macadamia Nutshell–Polymer Biocomposites with Improved Mechanical and Fire Safety Performances. ACS Sustainable Chemistry and Engineering, 2021, 9, 4463-4476.	3.2	21
185	Organophosphorus-Functionalized Zirconium-Based Metal–Organic Framework Nanostructures for Improved Mechanical and Flame Retardant Polymer Nanocomposites. ACS Applied Nano Materials, 2021, 4, 13027-13040.	2.4	21
186	Spatial inhomogeneity, interfaces and complex vitrification kinetics in a network forming nanocomposite. Soft Matter, 2021, 17, 2775-2790.	1.2	20
187	Recent Progress on Synthesis, Characterization, and Applications of Metal Halide Perovskites@Metal Oxide. Advanced Functional Materials, 2021, 31, 2104634.	7.8	19
188	AN S- AND P-CONTAINING FLAME RETARDANT FOR POLYPROPYLENE. Chinese Journal of Polymer Science (English Edition), 2008, 26, 299.	2.0	18
189	Thermal Degradation and Combustion Behaviors of Flame-Retardant Polypropylene/Thermoplastic Polyurethane Blends. Journal of Macromolecular Science - Physics, 2009, 48, 889-909.	0.4	18
190	Phosphorus-containing poly(trimethylene terephthalate) derived from 2-(6-oxido-6H-dibenz〴c,e〉ã€^1,2〉oxaphosphorin-6-yl)-1,4-hydroxyethoxy phenylene: Synthesis, thermal degradation, combustion and pyrolysis behavior. Journal of Analytical and Applied Pyrolysis, 2013, 99, 40-48.	2.6	17
191	Insightful investigation of smoke suppression behavior and mechanism of polystyrene with ferrocene: An important role of intermediate smoke. Fire and Materials, 2018, 42, 286-295.	0.9	17
192	An efficient approach to improving fire retardancy and smoke suppression for intumescent flameâ€retardant polypropylene composites via incorporating organoâ€modified sepiolite. Fire and Materials, 2019, 43, 961-970.	0.9	17
193	Dielectric and flash DSC investigations on an epoxy based nanocomposite system with MgAl layered double hydroxide as nanofiller. Thermochimica Acta, 2019, 677, 151-161.	1.2	17
194	Impact of expandable graphite on flame retardancy and mechanical properties of rigid polyurethane foam. Polymer Composites, 2019, 40, E1705.	2.3	17
195	Electrospun submicron NiO fibers combined with nanosized carbon black as reinforcement for multi-functional poly(lactic acid) composites. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105662.	3.8	17
196	An Overview of the Flame Retardants for Poly(vinyl chloride): Recent States and Perspective ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1870-1896.	2.6	17
197	Low heat yielding electrospun phosphenanthrene oxide loaded polyacrylonitrile composite separators for safer high energy density lithium-ion batteries Applied Materials Today, 2020, 20, 100675.	2.3	16
198	Effect of Organoâ€Modified Nanosepiolite on Fire Behaviors and Mechanical Performance of Polypropylene Composites. Chinese Journal of Chemistry, 2015, 33, 285-291.	2.6	15

#	Article	IF	CITATIONS
199	A Geometry Effect of Carbon Nanomaterials on Flame Retardancy and Mechanical Properties of Ethylene-Vinyl Acetate/Magnesium Hydroxide Composites. Polymers, 2018, 10, 1028.	2.0	15
200	Synthesis of K-Carrageenan Flame-Retardant Microspheres and Its Application for Waterborne Epoxy Resin with Functionalized Graphene. Polymers, 2019, 11, 1708.	2.0	15
201	Calorimetric and Dielectric Investigations of Epoxy-Based Nanocomposites with Halloysite Nanotubes as Nanofillers. Polymers, 2021, 13, 1634.	2.0	15
202	Self-cleaning cotton fabrics with good flame retardancy via one-pot approach. Polymer Degradation and Stability, 2021, 192, 109700.	2.7	15
203	Smart Low-temperature responsive fire alarm based on MXene/Graphene oxide film with wireless transmission: Remote real-time luminosity detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 651, 129641.	2.3	15
204	A novel organophosphorus flame retardant: Synthesis and durable finishing of poly(ethylene) Tj ETQq0 0 0 rgBT /	Overlock	10 ₁₄ 50 542
205	Low-melting phosphate glasses as flame-retardant synergists to epoxy: Barrier effects vs flame retardancy. Polymer Degradation and Stability, 2021, 185, 109495.	2.7	14
206	Layered double hydroxide: a new promising nanomaterial in energy application. Nanomaterials and Energy, 2014, 3, 177-191.	0.1	13
207	Studies on intumescent flame retardant polypropylene composites based on biodegradable wheat straw. Fire and Materials, 2018, 42, 703-709.	0.9	13
208	Synthesis, characterization and applications of low temperature melting glasses belonging to P2O5CaO Na2O system. Ceramics International, 2019, 45, 12234-12242.	2.3	13
209	Thermal Degradation and Combustion Behavior of a Modified Intumescent Flame-retardant ABS Composite. Journal of Thermoplastic Composite Materials, 2010, 23, 473-486.	2.6	12
210	Ring-Opening Copolymerization of Mixed Cyclic Monomers: A Facile, Versatile and Structure-Controllable Approach to Preparing Poly(methylphenylsiloxane) with Enhanced Thermal Stability. Industrial & Engineering Chemistry Research, 2017, 56, 7120-7130.	1.8	12
211	Basalt Fiber-Based Flame Retardant Epoxy Composites: Preparation, Thermal Properties, and Flame Retardancy. Materials, 2021, 14, 902.	1.3	12
212	Toward a New Generation of Fireâ€Safe Energy Storage Devices: Recent Progress on Fireâ€Retardant Materials and Strategies for Energy Storage Devices. Small Methods, 2022, 6, e2101428.	4.6	12
213	In Situ Ambient Preparation of Perovskite-Poly(<scp>l</scp> -lactic acid) Phosphors for Highly Stable and Efficient Hybrid Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 21800-21809.	4.0	11
214	Combination of Corn Pith Fiber and Biobased Flame Retardant: A Novel Method toward Flame Retardancy, Thermal Stability, and Mechanical Properties of Polylactide. Polymers, 2021, 13, 1562.	2.0	11
215	Bio-based materials for fire-retardant application in construction products: a review. Journal of Thermal Analysis and Calorimetry, 2022, 147, 6563-6582.	2.0	11
216	Surface engineering for cellulose as a boosted Layer-by-Layer assembly: Excellent flame retardancy and improved durability with introduction of bio-based "molecular glue― Applied Surface Science, 2022, 585, 152550.	3.1	11

#	Article	IF	CITATIONS
217	Effect of Modified Intumescent Flame Retardant via Surfactant/Polyacrylate Latex on Properties of Intumescent Flame Retardant ABS Composites. Journal of Macromolecular Science - Physics, 2008, 47, 1087-1095.	0.4	10
218	Molecular dynamics in aluminum layered double hydroxides as studied by 1H T1ϕNMR measurements. Chemical Physics Letters, 2011, 509, 138-142.	1.2	10
219	UNMODIFIED LDH AS REINFORCING FILLER FOR XNBR AND THE DEVELOPMENT OF FLAME-RETARDANT ELASTOMER COMPOSITES. Rubber Chemistry and Technology, 2014, 87, 606-616.	0.6	10
220	Effect of stereocomplex crystal and flexible segments on the crystallization and tensile behavior of poly(<scp>l</scp> -lactide). RSC Advances, 2018, 8, 28453-28460.	1.7	10
221	Surface Modification of Ammonium Polyphosphate for Enhancing Flame-Retardant Properties of Thermoplastic Polyurethane. Materials, 2022, 15, 1990.	1.3	10
222	Development of multifunctional highly-efficient bio-based fire-retardant poly(lactic acid) composites for simultaneously improving thermal, crystallization and fire safety properties. International Journal of Biological Macromolecules, 2022, 215, 646-656.	3.6	10
223	Synergistic effects of novolac-based char former with a phosphorus/nitrogen-containing flame retardant in polyamide 6. Chinese Journal of Polymer Science (English Edition), 2012, 30, 72-81.	2.0	9
224	Novel Dihydroxy-Containing Ammonium Phosphate Based Poly(Lactic Acid): Synthesis, Characterization and Flame Retardancy. Polymers, 2018, 10, 871.	2.0	9
225	Coordinating mechanical performance and fire safety of epoxy resin via functionalized nanodiamond. Diamond and Related Materials, 2020, 108, 107964.	1.8	9
226	Synthesis, Characterization and Properties of New Semifluorinated Poly(arylene ether phosphine) Tj ETQq0 0 0 rg	gBT /Overlo 1.7	ock 10 Tf 50
227	Synthesis, characterization, and properties of new siloxane grafted copolyimides. Journal of Applied Polymer Science, 2012, 123, 2959-2967.	1.3	8
228	Polyamide 6 with a flame retardant encapsulated by polyamide 66: Flame retardation, thermo-decomposition and the potential mechanism. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 1	rg B TdOver	lo s k 10 Tf 5(
229	Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Advances, 2015, 5, 100049-100053.	1.7	8
230	High-performance carrageenan film based on carrageenan intercalated layered double hydroxide with enhanced properties: Fire safety, thermal stability and barrier effect. Composites Communications, 2018, 9, 1-5.	3.3	8
231	Synthesis and Characterization of Phosphorus- and Carborane-Containing Polyoxanorbornene Block Copolymers. Polymers, 2019, 11, 613.	2.0	8
232	Surface Functionalization of Black Phosphorus via Amine Compounds and Its Impacts on the Flame Retardancy and Thermal Decomposition Behaviors of Epoxy Resin. Polymers, 2021, 13, 3635.	2.0	8
233	Effect of Cellulose Nanocrystals on Fire, Thermal and Mechanical Behavior of N,N'-Diallyl-phenylphosphoricdiamide Modified Poly(lactic acid). Journal of Renewable Materials, 2017, 5, 423-434.	1.1	6
234	Promotion of the flame retardancy of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide grafted natural rubber using expandable graphite. Arabian Journal of Chemistry, 2021, 14, 102980.	2.3	6

#	Article	IF	CITATIONS
235	Magnesium hydroxide microâ€whiskers as superâ€reinforcer to improve fire retardancy and mechanical property of epoxy resin. Polymer Composites, 2022, 43, 1996-2009.	2.3	6
236	Highly efficient flame retardant and smoke suppression mechanism of polypropylene nanocomposites based on clay and allylamine polyphosphate. Journal of Applied Polymer Science, 2022, 139, .	1.3	6
237	A facile technique to investigate the char strength and fire retardant performance towards intumescent epoxy nanocomposites containing different synergists. Polymer Degradation and Stability, 2022, 202, 110000.	2.7	6
238	Nonisothermal Crystallization Behaviors of Flame-Retardant Copolyester/Montmorillonite Nanocomposites. Journal of Macromolecular Science - Physics, 2009, 48, 927-940.	0.4	5
239	Reversible 1:1 Inclusion Complexes of C ₆₀ Derivatives in α- and β-Cyclodextrins: Implications for Molecular Recognition-Based Sensing and Supramolecular Assembly. ACS Applied Nano Materials, 2022, 5, 149-159.	2.4	5
240	Shape-stable and smart polyrotaxane-based phase change materials with enhanced flexibility and fire-safety. European Polymer Journal, 2022, 173, 111262.	2.6	5
241	Thermal stability and pyrolysis behavior of an efficient fire-retarded polypropylene containing allylamine polyphosphate and pentaerythritol. Thermochimica Acta, 2022, 708, 179083.	1.2	4
242	Structure mediation and ductility enhancement of poly(l-lactide) by random copolymer poly(d-lactide-co- <i>Îμ</i> -caprolactone). Journal of Polymer Engineering, 2018, 38, 819-826.	0.6	3
243	Bioinspired growth of iron derivatives on mesoporous silica: effect on thermal degradation and fire behavior of polystyrene. Nanotechnology, 2020, 31, 065601.	1.3	3
244	Highly efficient BiVO4 single-crystal nanosheets with dual modification: phosphorus doping and selective Ag modification. Nanotechnology, 2021, 32, 325701.	1.3	3
245	Effect of high-energy electrons on the thermal, mechanical and fire safety properties of fire-retarded polypropylene nanocomposites. Radiation Physics and Chemistry, 2022, 194, 110016.	1.4	3
246	Flame-retardant wood plastic composites. , 2022, , 117-136.		1
247	Notice of Retraction: How to learn polymer science well for university students whose major is not polymer science. , 2010, , .		0
248	Combustion and polymer composites. Nanomaterials and Energy, 2014, 3, 1-2.	0.1	0
249	Toward an Inâ€Depth Fire Hazard and Resistance Diagnosis of Flame Retarded Liquid Electrolytes for Safer Lithiumâ€Ion Batteries. Advanced Materials Technologies. 0 2101055.	3.0	0