
Marc Prentki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2633536/publications.pdf Version: 2024-02-01

MADO DDENTKI

#	Article	IF	CITATIONS
1	BaZiBuShen alleviates cognitive deficits and regulates Sirt6/NRF2/HO-1 and Sirt6/P53-PGC-1α-TERT signaling pathways in aging mice. Journal of Ethnopharmacology, 2022, 282, 114653.	4.1	17
2	Phosphoglycolate phosphatase homologs act as glycerol-3-phosphate phosphatase to control stress and healthspan in C. elegans. Nature Communications, 2022, 13, 177.	12.8	16
3	Glycerol-3-phosphate phosphatase operates a glycerol shunt in pancreatic β-cells that controls insulin secretion and metabolic stress. Molecular Metabolism, 2022, 60, 101471.	6.5	5
4	Neutral sphingomyelinaseâ \in 2 and cardiometabolic diseases. Obesity Reviews, 2021, 22, e13248.	6.5	21
5	Elevated Expression of Glycerol-3-Phosphate Phosphatase as a Biomarker of Poor Prognosis and Aggressive Prostate Cancer. Cancers, 2021, 13, 1273.	3.7	4
6	BaZiBuShen alleviates altered testicular morphology and spermatogenesis and modulates Sirt6/P53 and Sirt6/NF-κB pathways in aging mice induced by D-galactose and NaNO2. Journal of Ethnopharmacology, 2021, 271, 113810.	4.1	32
7	Dietary citrate acutely induces insulin resistance and markers of liver inflammation in mice. Journal of Nutritional Biochemistry, 2021, 98, 108834.	4.2	7
8	Lipid-associated metabolic signalling networks in pancreatic beta cell function. Diabetologia, 2020, 63, 10-20.	6.3	58
9	The multi-faces of Angptl8 in health and disease: Novel functions beyond lipoprotein lipase modulation. Progress in Lipid Research, 2020, 80, 101067.	11.6	48
10	Nutrient-Induced Metabolic Stress, Adaptation, Detoxification, and Toxicity in the Pancreatic β-Cell. Diabetes, 2020, 69, 279-290.	0.6	92
11	Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Reports, 2020, 21, e49634.	4.5	31
12	microRNA-375 regulates glucose metabolism-related signaling for insulin secretion. Journal of Endocrinology, 2020, 244, 189-200.	2.6	27
13	Adipose ABHD6 regulates tolerance to cold and thermogenic programs. JCI Insight, 2020, 5, .	5.0	20
14	Age-Dependent Control of Energy Homeostasis by Brown Adipose Tissue in Progeny Subjected to Maternal Diet–Induced Fetal Programming. Diabetes, 2017, 66, 627-639.	0.6	20
15	Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes, Obesity and Metabolism, 2017, 19, 76-89.	4.4	62
16	Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases. Biochimie, 2017, 143, 18-28.	2.6	43
17	Mammary adipocytes stimulate breast cancer invasion through metabolic remodeling of tumor cells. JCI Insight, 2017, 2, e87489.	5.0	304
18	α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility. Cell Reports, 2016, 17, 1217-1226.	6.4	29

Marc Prentki

#	Article	IF	CITATIONS
19	α∫β-Hydrolase Domain 6 Deletion Induces Adipose Browning and Prevents Obesity and Type 2 Diabetes. Cell Reports, 2016, 14, 2872-2888.	6.4	61
20	FoxO1 Deacetylation Decreases Fatty Acid Oxidation in Î ² -Cells and Sustains Insulin Secretion in Diabetes. Journal of Biological Chemistry, 2016, 291, 10162-10172.	3.4	49
21	Simplified assays of lipolysis enzymes for drug discovery and specificity assessment of known inhibitors. Journal of Lipid Research, 2016, 57, 131-141.	4.2	42
22	Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E430-9.	7.1	88
23	Differential Insulin Secretion of High-Fat Diet-Fed C57BL/6NN and C57BL/6NJ Mice: Implications of Mixed Genetic Background in Metabolic Studies. PLoS ONE, 2016, 11, e0159165.	2.5	24
24	Response to Comments on Nolan et al. Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes 2015;64:673–686. Diabetes, 2015, 64, e38-e39.	0.6	4
25	$\hat{I}\pm / \hat{I}^2$ -Hydrolase domain-6 and saturated long chain monoacylglycerol regulate insulin secretion promoted by both fuel and non-fuel stimuli. Molecular Metabolism, 2015, 4, 940-950.	6.5	32
26	Insulin Resistance as a Physiological Defense Against Metabolic Stress: Implications for the Management of Subsets of Type 2 Diabetes. Diabetes, 2015, 64, 673-686.	0.6	165
27	Defective insulin secretory response to intravenous glucose in C57Bl/6J compared to C57Bl/6N mice. Molecular Metabolism, 2014, 3, 848-854.	6.5	77
28	α/β-Hydrolase Domain-6-Accessible Monoacylglycerol Controls Glucose-Stimulated Insulin Secretion. Cell Metabolism, 2014, 19, 993-1007.	16.2	125
29	Metabolic Inflexibility Impairs Insulin Secretion and Results In MODY-like Diabetes in Triple FoxO-Deficient Mice. Cell Metabolism, 2014, 20, 593-602.	16.2	86
30	Intensive insulin for type 2 diabetes: the risk of causing harm. Lancet Diabetes and Endocrinology,the, 2013, 1, 9-10.	11.4	31
31	Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes. Molecular and Cellular Endocrinology, 2012, 353, 88-100.	3.2	124
32	Glycerolipid Metabolism and Signaling in Health and Disease. Endocrine Reviews, 2008, 29, 647-676.	20.1	242
33	Upregulation of cellular triacylglycerol – free fatty acid cycling by oleate is associated with long-term serum-free survival of human breast cancer cells. Biochemistry and Cell Biology, 2007, 85, 301-310.	2.0	49
34	Oleate Promotes the Proliferation of Breast Cancer Cells via the G Protein-coupled Receptor GPR40. Journal of Biological Chemistry, 2005, 280, 13285-13291.	3.4	154
35	Malonyl-CoA Signaling, Lipid Partitioning, and Glucolipotoxicity: Role in Â-Cell Adaptation and Failure in the Etiology of Diabetes. Diabetes, 2002, 51, S405-S413.	0.6	380
36	The Role of Long-Chain Fatty Acyl-CoA Esters in β-Cell Signal Transduction. Journal of Nutrition, 2000, 130, 299S-304S.	2.9	147

Marc Prentki

#	Article	IF	CITATIONS
37	Essentiality of intron control in the induction of câ€ <i>fos</i> by glucose and glucoincretin peptides in INSâ€1 βâ€cells. FASEB Journal, 2000, 14, 128-136.	0.5	34
38	Lipid rather than glucose metabolism is implicated in altered insulin secretion caused by oleate in INS-1 cells. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E521-E528.	3.5	55
39	Glucose and glucoincretin peptides synergize to induce câ€ <i>fos</i> , câ€ <i>jun</i> , <i>junB</i> , <i>zif</i> â€268, and nurâ€ <i>77</i> gene expression in pancreatic β(INSâ€1) cells. FA Journal, 1998, 12, 1173-1182.	ASEEB5	97