Luis R Hernandez-Miranda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2633233/publications.pdf

Version: 2024-02-01

19 1,771 15 19 g-index

21 21 21 3099

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Regulation of early cerebellar development. FEBS Journal, 2023, 290, 2786-2804.	4.7	14
2	Olig3 regulates early cerebellar development. ELife, 2021, 10, .	6.0	24
3	The SNAG Domain of Insm1 Regulates Pancreatic Endocrine Cell Differentiation and Represses \hat{I}^2 - to \hat{I} -Cell Transdifferentiation. Diabetes, 2021, 70, 1084-1097.	0.6	5
4	The Role of Neurod Genes in Brain Development, Function, and Disease. Frontiers in Molecular Neuroscience, 2021, 14, 662774.	2.9	73
5	Context-specific regulation of cell survival by a miRNA-controlled BIM rheostat. Genes and Development, 2019, 33, 1673-1687.	5.9	13
6	Mutation in <i>LBX1/Lbx1</i> precludes transcription factor cooperativity and causes congenital hypoventilation in humans and mice. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13021-13026.	7.1	27
7	Mutations in Disordered Regions Can Cause Disease by Creating Dileucine Motifs. Cell, 2018, 175, 239-253.e17.	28.9	97
8	Mutations in <i>MYO1H </i> cause a recessive form of central hypoventilation with autonomic dysfunction. Journal of Medical Genetics, 2017, 54, 754-761.	3.2	21
9	Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science, 2017, 357, .	12.6	978
10	Genetic identification of a hindbrain nucleus essential for innate vocalization. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8095-8100.	7.1	74
11	The dorsal spinal cord and hindbrain: From developmental mechanisms to functional circuits. Developmental Biology, 2017, 432, 34-42.	2.0	74
12	Homozygous ARHGEF2 mutation causes intellectual disability and midbrain-hindbrain malformation. PLoS Genetics, 2017, 13, e1006746.	3.5	27
13	Neuregulin-1 controls an endogenous repair mechanism after spinal cord injury. Brain, 2016, 139, 1394-1416.	7.6	69
14	Quantitative Proteomics Reveals Dynamic Interaction of c-Jun N-terminal Kinase (JNK) with RNA Transport Granule Proteins Splicing Factor Proline- and Glutamine-rich (Sfpq) and Non-POU Domain-containing Octamer-binding Protein (Nono) during Neuronal Differentiation. Molecular and Cellular Proteomics, 2015, 14, 50-65.	3.8	17
15	CO2 in the spotlight. ELife, 2015, 4, .	6.0	5
16	Insm1 controls development of pituitary endocrine cells and requires a SNAG domain for function and for recruitment of histone-modifying factors. Development (Cambridge), 2013, 140, 4947-4958.	2.5	46
17	Robo1 Regulates Semaphorin Signaling to Guide the Migration of Cortical Interneurons through the Ventral Forebrain. Journal of Neuroscience, 2011, 31, 6174-6187.	3.6	92
18	Molecules and Mechanisms Involved in the Generation and Migration of Cortical Interneurons. ASN Neuro, 2010, 2, AN20090053.	2.7	82

#	Article	IF	CITATIONS
19	The Role of Robo3 in the Development of Cortical Interneurons. Cerebral Cortex, 2009, 19, i22-i31.	2.9	32