Erika Braga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/263307/publications.pdf

Version: 2024-02-01

110 papers	2,769 citations	29 h-index	254184 43 g-index
118	118	118	2931
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Molecular detection of Leucocytozoon in red-legged seriemas (Cariama cristata), a non-migratory bird species in the Brazilian Cerrado. Veterinary Parasitology: Regional Studies and Reports, 2022, 31, 100652.	0.5	3
2	Migratory behaviour does not alter cophylogenetic congruence between avian hosts and their haemosporidian parasites. Parasitology, 2022, 149, 905-912.	1.5	8
3	A new haemosporidian parasite from the Red-legged Seriema Cariama cristata (Cariamiformes,) Tj ETQq1 1 0.784	314 rgBT ,	Oyerlock 10
4	Higher infection probability of haemosporidian parasites in Blue-black Grassquits (Volatinia jacarina) inhabiting native vegetation across Brazil. Parasitology International, 2021, 80, 102204.	1.3	8
5	Migrant birds disperse haemosporidian parasites and affect their transmission in avian communities. Oikos, 2021, 130, 979-988.	2.7	17
6	Host migration and environmental temperature influence avian haemosporidians prevalence: a molecular survey in a Brazilian Atlantic rainforest. PeerJ, 2021, 9, e11555.	2.0	6
7	Plasmodium ouropretensis, n. sp., a new case of non-erythrocytic species within lizard malaria parasites. Parasitology, 2021, 148, 1467-1474.	1.5	1
8	Loss of forest cover and host functional diversity increases prevalence of avian malaria parasites in the Atlantic Forest. International Journal for Parasitology, 2021, 51, 719-728.	3.1	9
9	Global drivers of avian haemosporidian infections vary across zoogeographical regions. Global Ecology and Biogeography, 2021, 30, 2393-2406.	5.8	42
10	Haemosporidian taxonomic composition, network centrality and partner fidelity between resident and migratory avian hosts. Oecologia, 2021, 197, 501-509.	2.0	4
11	Migratory birds have higher prevalence and richness of avian haemosporidian parasites than residents. International Journal for Parasitology, 2021, 51, 877-882.	3.1	23
12	Diptera Vectors of Avian Haemosporidians: With Emphasis on Tropical Regions. , 2020, , 185-250.		10
13	Changes in malaria patterns in Brazil over 28 years (1990–2017): results from the Global Burden of Disease Study 2017. Population Health Metrics, 2020, 18, 5.	2.7	12
14	First report of avian malaria in a Manx shearwater (Puffinus puffinus). Parasitology International, 2020, 78, 102148.	1.3	7
15	Autoantibodies and Malaria: Where We Stand? Insights Into Pathogenesis and Protection. Frontiers in Cellular and Infection Microbiology, 2020, 10, 262.	3.9	19
16	Molecular and pathological investigations of Plasmodium parasites infecting striped forest whiptail lizards (Kentropyx calcarata) in Brazil. Parasitology Research, 2020, 119, 2631-2640.	1.6	4
17	Hemoparasites and their relation to body condition and plumage coloration of the White-necked thrush (<i>Turdus albicollis</i>). Ethology Ecology and Evolution, 2020, 32, 509-526.	1.4	8
18	Effects of IgG and IgM autoantibodies on non-infected erythrocytes is related to ABO blood group in Plasmodium vivax malaria and is associated with anemia. Microbes and Infection, 2020, 22, 379-383.	1.9	7

#	Article	IF	CITATIONS
19	Using a multistate occupancy approach to determine molecular diagnostic accuracy and factors affecting avian haemosporidian infections. Scientific Reports, 2020, 10, 8480.	3.3	10
20	Preliminary assessment of anti- $\hat{1}\pm$ -Gal IgG and IgM levels in patients with patent Plasmodium vivax infection. Memorias Do Instituto Oswaldo Cruz, 2019, 114, e190145.	1.6	3
21	Epidemiology, hematology, and unusual morphological characteristics of Plasmodium during an avian malaria outbreak in penguins in Brazil. Parasitology Research, 2019, 118, 3497-3508.	1.6	14
22	First record of haemosporidian parasites infecting swifts (Aves: Apodidae). Acta Tropica, 2019, 197, 105070.	2.0	3
23	Avian haemosporidians in the cattle egret (Bubulcus ibis) from central-western and southern Africa: High diversity and prevalence. PLoS ONE, 2019, 14, e0212425.	2.5	4
24	Patterns of avian malaria in tropical and temperate environments: testing the "The enemy release hypothesis". Biota Neotropica, 2019, 19, .	0.5	9
25	Close relationship of Plasmodium sequences detected from South American pampas deer (Ozotoceros) Tj ETQq1 Parasitology: Parasites and Wildlife, 2018, 7, 44-47.	1 0.78431 1.5	.4 rgBT /Ove
26	Host community similarity and geography shape the diversity and distribution of haemosporidian parasites in Amazonian birds. Ecography, 2018, 41, 505-515.	4.5	57
27	Investigation ofBabesiasp. in pygoscelid penguins at the South Shetland Islands. Polar Research, 2018, 37, 1500267.	1.6	O
28	Haemoproteus paraortalidum n. sp. in captive Black-fronted Piping-guans Aburria jacutinga (Galliformes, Cracidae): High prevalence in a population reintroduced into the wild. Acta Tropica, 2018, 188, 93-100.	2.0	10
29	A new pathogen spillover from domestic to wild animals: <i>Plasmodium juxtanucleare</i> infects free-living passerines in Brazil. Parasitology, 2018, 145, 1949-1958.	1.5	29
30	Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Scientific Reports, 2018, 8, 8762.	3.3	22
31	Host associations and turnover of haemosporidian parasites in manakins (Aves: Pipridae). Parasitology, 2017, 144, 984-993.	1.5	21
32	A systematic review on malaria sero-epidemiology studies in the Brazilian Amazon: insights into immunological markers for exposure and protection. Malaria Journal, 2017, 16, 107.	2.3	24
33	Habitat modification and seasonality influence avian haemosporidian parasite distributions in southeastern Brazil. PLoS ONE, 2017, 12, e0178791.	2.5	33
34	Searching for putative avian malaria vectors in a Seasonally Dry Tropical Forest in Brazil. Parasites and Vectors, 2016, 9, 587.	2.5	28
35	Avian Malaria (<i>Plasmodium</i> spp.) in Captive Magellanic Penguins (<i>Spheniscus) Tj ETQq1 1 0.784314 rgE</i>	BT/Qverloo	ck 10 Tf 50
36	Effects of avian malaria on male behaviour and female visitation in lekking blueâ€erowned manakins. Journal of Avian Biology, 2016, 47, 457-465.	1.2	23

#	Article	IF	Citations
37	Blood parasites of penguins: a critical review. Parasitology, 2016, 143, 931-956.	1.5	43
38	Profiling of individual human red blood cells under osmotic stress using defocusing microscopy. Journal of Biomedical Optics, 2016, 21, 090505.	2.6	9
39	Anti-erythrocyte antibodies may contribute to anaemia in Plasmodium vivax malaria by decreasing red blood cell deformability and increasing erythrophagocytosis. Malaria Journal, 2016, 15, 397.	2.3	31
40	Allele-specific antibodies to Plasmodium vivax merozoite surface protein-1: prevalence and inverse relationship to haemoglobin levels during infection. Malaria Journal, 2016, 15, 559.	2.3	4
41	Trade-offs and resource breadth processes as drivers of performance and specificity in a host–parasite system: a new integrative hypothesis. International Journal for Parasitology, 2016, 46, 115-121.	3.1	37
42	Malaria in penguins – current perceptions. Avian Pathology, 2016, 45, 393-407.	2.0	64
43	Cytokine modulation of human blood viscosity from vivax malaria patients. Acta Tropica, 2016, 158, 139-147.	2.0	24
44	Evaluating anti-Orthopoxvirus antibodies in individuals from Brazilian rural areas prior to the bovine vaccinia era. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 804-808.	1.6	9
45	Epidemiology and molecular phylogeny of Babesia sp. in Little Penguins Eudyptula minor in Australia. International Journal for Parasitology: Parasites and Wildlife, 2015, 4, 198-205.	1.5	17
46	Epidemiology and pathology of avian malaria in penguins undergoing rehabilitation in Brazil. Veterinary Research, 2015, 46, 30.	3.0	53
47	Prevalence and diversity of avian malaria parasites in migratory Black Skimmers (Rynchops niger,) Tj ETQq $1\ 1\ 0.7$	84314 rgE 1.6	BT <u>1</u> 9verlock
48	An immunoproteomic approach reveals a different pattern of non-infected erythrocyte membrane protein recognition by antibodies from non-anemic and anemic patients with patent Plasmodium vivax infection. Malaria Journal, 2014, 13, .	2.3	0
49	Potential Immune Mechanisms Associated with Anemia in Plasmodium vivax Malaria: a Puzzling Question. Infection and Immunity, 2014, 82, 3990-4000.	2.2	32
50	<i>In vivo</i> antimalarial efficacy of acetogenins, alkaloids and flavonoids enriched fractions from <i>Annona crassiflora</i> Mart Natural Product Research, 2014, 28, 1254-1259.	1.8	29
51	Outbreak of Avian Malaria Associated to Multiple Species of Plasmodium in Magellanic Penguins Undergoing Rehabilitation in Southern Brazil. PLoS ONE, 2014, 9, e94994.	2.5	48
52	Do ticks and Borrelia burgdorferi s.l. constitute a burden to birds?. Parasitology Research, 2013, 112, 1903-1912.	1.6	30
53	Parasitological and new molecular-phylogenetic characterization of the malaria parasite Plasmodium tejerai in South American penguins. Parasitology International, 2013, 62, 165-171.	1.3	32
54	Plasmodium vivax infection induces expansion of activated $na\tilde{A}^-ve/memory$ TÂcells and differentiation into a central memory profile. Microbes and Infection, 2013, 15, 837-843.	1.9	7

#	Article	IF	CITATIONS
55	Blood Parasites in Nestlings of Wood Stork Populations from Three Regions of the American Continent. Journal of Parasitology, 2013, 99, 522-527.	0.7	15
56	Interactions of <i>Plasmodium juxtanucleare </i> and chicken anaemia virus: establishing a model. Parasitology, 2013, 140, 1777-1788.	1.5	4
57	Exploring the Diversity and Distribution of Neotropical Avian Malaria Parasites – A Molecular Survey from Southeast Brazil. PLoS ONE, 2013, 8, e57770.	2.5	89
58	Does haemosporidian infection affect hematological and biochemical profiles of the endangered Black-fronted piping-guan (<i>Aburria jacutinga</i>)?. PeerJ, 2013, 1, e45.	2.0	20
59	Interleukin-17 producing T helper cells are increased during natural Plasmodium vivax infection. Acta Tropica, 2012, 123, 53-57.	2.0	37
60	Naturally acquired antibodies to Plasmodium vivax blood-stage vaccine candidates (PvMSP-119 and) Tj ETQq0 0 0 Brazilian Amazon. Microbes and Infection, 2012, 14, 730-739.	rgBT /Ove 1.9	rlock 10 Tf ! 27
61	Diversity of avian haemosporidians in arid zones of northern Venezuela. Parasitology, 2012, 139, 1021-1028.	1.5	20
62	Blood parasites in passerine birds from the Brazilian Atlantic Forest. Brazilian Journal of Veterinary Parasitology, 2012, 21, 7-15.	0.7	25
63	Long-Term Humoral and Cellular Immune Responses Elicited by a Heterologous Plasmodium vivax Apical Membrane Antigen 1 Protein Prime/Adenovirus Boost Immunization Protocol. Infection and Immunity, 2011, 79, 3642-3652.	2.2	32
64	<i>Hepatozoon</i> ssp. (Apicomplexa: Hepatozoidae) Infection and Selected Hematological Values of the Neotropical Rattlesnake, <i>Crotalus durissus collilineatus</i> (Linnaeus, 1758) (Serpentes:) Tj ETQq0 0 0 rgBT	∕Q øerlock	2 0 Tf 50 37
65	Plasmodium berghei NK65 induces cerebral leukocyte recruitment in vivo: An intravital microscopic study. Acta Tropica, 2011, 120, 31-39.	2.0	23
66	Hematological and parasitological health conditions of the Pale-breasted Thrush (Turdus) Tj ETQq0 0 0 rgBT /Overl	lock 10 Tf	50 302 Td (
67	Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil. PLoS ONE, 2011, 6, e17654.	2.5	55
68	Identification of a Highly Antigenic Linear B Cell Epitope within Plasmodium vivax Apical Membrane Antigen 1 (AMA-1). PLoS ONE, 2011, 6, e21289.	2.5	40
69	Recent advances in the study of avian malaria: an overview with an emphasis on the distribution of Plasmodium spp in Brazil. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 3-11.	1.6	66
70	High prevalence of blood parasites in social birds from a neotropical savanna in Brazil. Emu, 2011, 111, 132-138.	0.6	50
71	Seroprevalence of orthopoxvirus in an Amazonian rural village, Acre, Brazil. Archives of Virology, 2010, 155, 1139-1144.	2.1	28
72	Epidemiology and control of frontier malaria in Brazil: lessons from community-based studies in rural Amazonia. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2010, 104, 343-350.	1.8	56

#	Article	IF	Citations
7 3	Plasmodium vivax: Induction of CD4+CD25+FoxP3+ Regulatory T Cells during Infection Are Directly Associated with Level of Circulating Parasites. PLoS ONE, 2010, 5, e9623.	2.5	77
74	Microfilariae Infection in Wild Birds from the Brazilian Cerrado. Journal of Wildlife Diseases, 2010, 46, 1305-1309.	0.8	7
75	Immunoglobulin GM 3 23 5,13,14 phenotype is strongly associated with IgG1 antibody responses to Plasmodium vivax vaccine candidate antigens PvMSP1-19 and PvAMA-1. Malaria Journal, 2010, 9, 229.	2.3	16
76	Blood parasites in Brazilian Atlantic Forest birds: effects of fragment size and habitat dependency. Bird Conservation International, 2010, 20, 432-439.	1.3	21
77	Avian malaria in captive psittacine birds: Detection by microscopy and 18S rRNA gene amplification. Preventive Veterinary Medicine, 2009, 88, 220-224.	1.9	24
78	Naturally acquired inhibitory antibodies to <i>Plasmodium vivax</i> Duffy binding protein are short-lived and allele-specific following a single malaria infection. Clinical and Experimental Immunology, 2009, 156, 502-510.	2.6	56
79	Plasmodium vivax recombinant vaccine candidate AMA-1 plays an important role in adaptive immune response eliciting differentiation of dendritic cells. Vaccine, 2009, 27, 5581-5588.	3.8	17
80	Inhibitory Properties of the Antibody Response to Plasmodium vivax Duffy Binding Protein in an Area with Unstable Malaria Transmission. Scandinavian Journal of Immunology, 2008, 67, 270-278.	2.7	33
81	Polymorphism at the apical membrane antigen 1 locus reflects the world population history of Plasmodium vivax. BMC Evolutionary Biology, 2008, 8, 123.	3.2	26
82	Direct effect of Plasmodium vivax recombinant vaccine candidates AMA-1 and MSP-119 on the innate immune response. Vaccine, 2008, 26, 1204-1213.	3.8	15
83	Reduced protective effect of Plasmodium berghei immunization by concurrent Schistosoma mansoni infection. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 674-677.	1.6	14
84	Naturally acquired antibodies to merozoite surface protein (MSP)-1(19) and cumulative exposure to Plasmodium falciparum and Plasmodium vivax in remote populations of the Amazon Basin of Brazil. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 943-951.	1.6	22
85	Association between particular polymorphic residues on apical membrane antigen 1 (AMA-1) and platelet levels in patients with vivax malaria. Clinical Microbiology and Infection, 2007, 13, 1089-1094.	6.0	16
86	VARIANT-SPECIFIC ANTIBODIES TO MEROZOITE SURFACE PROTEIN 2 AND CLINICAL EXPRESSION OF PLASMODIUM FALCIPARUM MALARIA IN RURAL AMAZONIANS. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1084-1091.	1.4	15
87	Variant-specific antibodies to merozoite surface protein 2 and clinical expression of Plasmodium falciparum malaria in rural Amazonians. American Journal of Tropical Medicine and Hygiene, 2007, 76, 1084-91.	1.4	11
88	Factors Associated with Immunoglobulin G Subclass Polarization in Naturally Acquired Antibodies to Plasmodium falciparum Merozoite Surface Proteins: a Cross-Sectional Survey in Brazilian Amazonia. Vaccine Journal, 2006, 13, 810-813.	3.1	20
89	ANTIBODIES TO PLASMODIUM VIVAX APICAL MEMBRANE ANTIGEN 1: PERSISTENCE AND CORRELATION WITH MALARIA TRANSMISSION INTENSITY. American Journal of Tropical Medicine and Hygiene, 2006, 75, 582-587.	1.4	39
90	Antibodies to Plasmodium vivax apical membrane antigen 1: persistence and correlation with malaria transmission intensity. American Journal of Tropical Medicine and Hygiene, 2006, 75, 582-7.	1.4	29

#	Article	IF	Citations
91	Plasmodium falciparum: IgG subclass antibody response to merozoite surface protein-1 among Amazonian gold miners, in relation to infection status and disease expression. Experimental Parasitology, 2005, 109, 124-134.	1.2	18
92	lgG isotype to C-terminal $19\% \frac{1}{2}$ kDa of Plasmodium vivax merozoite surface protein 1 among subjects with different levels of exposure to malaria in Brazil. Parasitology Research, 2005, 95, 420-426.	1.6	42
93	<i>Lutzomyia longipalpis</i> Peritrophic Matrix: Formation, Structure, and Chemical Composition. Journal of Medical Entomology, 2005, 42, 928-938.	1.8	12
94	Avian malaria in Brazilian passerine birds: parasitism detected by nested PCR using DNA from stained blood smears. Parasitology, 2005, 130, 261-267.	1.5	46
95	Increased polyclonal immunoglobulin reactivity toward human and bacterial proteins is associated with clinical protection in human Plasmodium infection. Malaria Journal, 2005, 4, 5.	2.3	19
96	Polymorphism of the $Fc\hat{l}^3$ receptor IIA and malaria morbidity. Journal of Molecular and Genetic Medicine: an International Journal of Biomedical Research, 2005, 01, 5-10.	0.1	19
97	ANTI–PLASMODIUM VIVAX DUFFY BINDING PROTEIN ANTIBODIES MEASURE EXPOSURE TO MALARIA IN THE BRAZILIAN AMAZON. American Journal of Tropical Medicine and Hygiene, 2005, 72, 675-681.	1.4	37
98	Anti-Plasmodium vivax duffy binding protein antibodies measure exposure to malaria in the Brazilian Amazon. American Journal of Tropical Medicine and Hygiene, 2005, 72, 675-81.	1.4	25
99	Low sensitivity of nested PCR using Plasmodium DNA extracted from stained thick blood smears: an epidemiological retrospective study among subjects with low parasitaemia in an endemic area of the Brazilian Amazon region. Malaria Journal, 2004, 3, 8.	2.3	63
100	High prevalence of Plamodium malariae infections in a Brazilian Amazon endemic area (Apiacás—Mato) Tj ETQo	q0,0,0 rgE 2.0	BT Overlock
101	Variability of the salivary proteins of 20 Brazilian populations of Panstrongylus megistus (Hemiptera:) Tj ETQq $1\ 1$	0.784314	ł rgBT /Overl
102	Effect of the Aedes fluviatilis saliva on the development of Plasmodium gallinaceum infection in Gallus (gallus) domesticus. Memorias Do Instituto Oswaldo Cruz, 2004, 99, 709-715.	1.6	21
103	Low cellular response in vitro among subjects with long-term exposure to malaria transmission in Brazilian endemic areas American Journal of Tropical Medicine and Hygiene, 2002, 66, 299-303.	1.4	19
104	Association of the IgG response to Plasmodium falciparum merozoite protein (C-terminal 19 kD) with clinical immunity to malaria in the Brazilian Amazon region American Journal of Tropical Medicine and Hygiene, 2002, 66, 461-466.	1.4	67
105	Vertical toxoplasmosis in a murine model. Protection after immunization with antigens of Toxoplasma gondii incorporated into liposomes. Memorias Do Instituto Oswaldo Cruz, 2001, 96, 99-104.	1.6	28
106	Persistence of Humoral Response against Sporozoite and Bloodâ€Stage Malaria Antigens 7 Years after a Brief Exposure to <i>Plasmodium vivax</i> . Journal of Infectious Diseases, 1998, 177, 1132-1135.	4.0	29
107	Differential Serodiagnosis of Human Infections Caused by Trypanosoma cruzi and Leishmania spp. Using ELISA with a Recombinant Antigen (rTc24). Memorias Do Instituto Oswaldo Cruz, 1997, 92, 791-793.	1.6	12
108	Comparison of circumsporozoite proteins from avian and mammalian malarias: biological and phylogenetic implications Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 11889-11894.	7.1	157

#	Article	IF	CITATIONS
109	Difference in susceptibility to lysis between clones of the Y strain of Trypanosoma cruzi. Memorias Do Instituto Oswaldo Cruz, 1993, 88, 529-534.	1.6	8
110	Prevalence and richness of malaria and malaria-like parasites in wild birds from different biomes in South America. PeerJ, 0, 10, e13485.	2.0	1