
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632948/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tribbles 2 pseudokinase confers enzalutamide resistance in prostate cancer by promoting lineage plasticity. Journal of Biological Chemistry, 2022, 298, 101556.	3.4	4
2	ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nature Communications, 2022, 13, 2282.	12.8	34
3	Drug-Induced Epigenomic Plasticity Reprograms Circadian Rhythm Regulation to Drive Prostate Cancer toward Androgen Independence. Cancer Discovery, 2022, 12, 2074-2097.	9.4	22
4	Post-transcriptional Gene Regulation by MicroRNA-194 Promotes Neuroendocrine Transdifferentiation in Prostate Cancer. Cell Reports, 2021, 34, 108585.	6.4	33
5	Emergence of Enzalutamide Resistance in Prostate Cancer is Associated with BCL-2 and IKKB Dependencies. Clinical Cancer Research, 2021, 27, 2340-2351.	7.0	10
6	Distinct DNA methylation patterns associated with treatment resistance in metastatic castration resistant prostate cancer. Scientific Reports, 2021, 11, 6630.	3.3	8
7	Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nature Communications, 2021, 12, 1979.	12.8	70
8	CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nature Communications, 2021, 12, 1781.	12.8	32
9	Celebrating the 80th anniversary of hormone ablation for prostate cancer. Endocrine-Related Cancer, 2021, 28, T1-T10.	3.1	4
10	Targeting androgen receptor signaling: a historical perspective. Endocrine-Related Cancer, 2021, 28, T11-T18.	3.1	10
11	An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nature Cell Biology, 2021, 23, 1023-1034.	10.3	72
12	Development of a Benzothiazole Scaffold-Based Androgen Receptor N-Terminal Inhibitor for Treating Androgen-Responsive Prostate Cancer. ACS Chemical Biology, 2021, 16, 2103-2108.	3.4	7
13	Reciprocal deregulation of NKX3.1 and AURKA axis in castration-resistant prostate cancer and NEPC models. Journal of Biomedical Science, 2021, 28, 68.	7.0	0
14	Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nature Communications, 2021, 12, 6377.	12.8	16
15	The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer. Nature Communications, 2021, 12, 7349.	12.8	51
16	The DNA methylation landscape of advanced prostate cancer. Nature Genetics, 2020, 52, 778-789.	21.4	198
17	Modulation of de Novo Lipogenesis Improves Response to Enzalutamide Treatment in Prostate Cancer. Cancers, 2020, 12, 3339.	3.7	15
18	Interleukin-10 Induces Expression of Neuroendocrine Markers and PDL1 in Prostate Cancer Cells. Prostate Cancer 2020 2020 1-12	0.6	10

2

#	Article	IF	CITATIONS
19	Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nature Communications, 2020, 11, 384.	12.8	56
20	Trop2 is a driver of metastatic prostate cancer with neuroendocrine phenotype via PARP1. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2032-2042.	7.1	85
21	The epigenetic and transcriptional landscape of neuroendocrine prostate cancer. Endocrine-Related Cancer, 2020, 27, R35-R50.	3.1	59
22	The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clinical Cancer Research, 2019, 25, 6916-6924.	7.0	200
23	The evolution of long noncoding RNA acceptance in prostate cancer initiation, progression, and its clinical utility in disease management. European Urology, 2019, 76, 546-559.	1.9	82
24	ONECUT2 is a driver of neuroendocrine prostate cancer. Nature Communications, 2019, 10, 278.	12.8	143
25	Biological Evolution of Castration-resistant Prostate Cancer. European Urology Focus, 2019, 5, 147-154.	3.1	71
26	Development of a Transcriptional Amplification System Based on the PEG3 Promoter to Target Androgen Receptor-Positive and -Negative Prostate Cancer Cells. International Journal of Molecular Sciences, 2019, 20, 216.	4.1	3
27	Neural Transcription Factors in Disease Progression. Advances in Experimental Medicine and Biology, 2019, 1210, 437-462.	1.6	2
28	lvermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. Journal of Clinical Investigation, 2019, 130, 699-714.	8.2	36
29	PEG10 is associated with treatment-induced neuroendocrine prostate cancer. Journal of Molecular Endocrinology, 2019, 63, 39-49.	2.5	25
30	Cellular plasticity and the neuroendocrine phenotype in prostate cancer. Nature Reviews Urology, 2018, 15, 271-286.	3.8	273
31	Castration-Resistant Prostate Cancer. Molecular Pathology Library, 2018, , 297-322.	0.1	0
32	Heterochromatin Protein 11± Mediates Development and Aggressiveness of Neuroendocrine Prostate Cancer. Cancer Research, 2018, 78, 2691-2704.	0.9	48
33	<scp>SEMA</scp> 3C drives cancer growth by transactivating multiple receptor tyrosine kinases via Plexin B1. EMBO Molecular Medicine, 2018, 10, 219-238.	6.9	54
34	Role of Androgen Receptor Variants in Prostate Cancer: Report from the 2017 Mission Androgen Receptor Variants Meeting. European Urology, 2018, 73, 715-723.	1.9	105
35	Coâ€ŧargeting driver pathways in prostate cancer: two birds with one stone. EMBO Molecular Medicine, 2018, 10, .	6.9	6
36	Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. European Urology, 2018, 73, 949-960.	1.9	19

#	Article	IF	CITATIONS
37	Patient-derived xenografts: A platform for accelerating translational research in prostate cancer. Molecular and Cellular Endocrinology, 2018, 462, 17-24.	3.2	20
38	Galiellalactone inhibits the STAT3/AR signaling axis and suppresses Enzalutamide-resistant Prostate Cancer. Scientific Reports, 2018, 8, 17307.	3.3	23
39	The long noncoding RNA landscape of neuroendocrine prostate cancer and its clinical implications. GigaScience, 2018, 7, .	6.4	54
40	Risk SNP-Mediated Promoter-Enhancer Switching Drives Prostate Cancer through IncRNA PCAT19. Cell, 2018, 174, 564-575.e18.	28.9	264
41	Genomic Hallmarks and Structural Variation in Metastatic Prostate Cancer. Cell, 2018, 174, 758-769.e9.	28.9	459
42	MicroRNA-194 Promotes Prostate Cancer Metastasis by Inhibiting SOCS2. Cancer Research, 2017, 77, 1021-1034.	0.9	94
43	Clusterin as a therapeutic target. Expert Opinion on Therapeutic Targets, 2017, 21, 201-213.	3.4	102
44	LSD1-Mediated Epigenetic Reprogramming Drives CENPE Expression and Prostate Cancer Progression. Cancer Research, 2017, 77, 5479-5490.	0.9	71
45	Targeting Prostate Cancer Subtype 1 by Forkhead Box M1 Pathway Inhibition. Clinical Cancer Research, 2017, 23, 6923-6933.	7.0	30
46	The Master Neural Transcription Factor BRN2 Is an Androgen Receptor–Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer. Cancer Discovery, 2017, 7, 54-71.	9.4	285
47	<i>BIRC6</i> Targeting as Potential Therapy for Advanced, Enzalutamide-Resistant Prostate Cancer. Clinical Cancer Research, 2017, 23, 1542-1551.	7.0	28
48	Chaperoning the Cancer: The Proteostatic Functions of the Heat Shock Proteins in Cancer. Recent Patents on Anti-Cancer Drug Discovery, 2017, 12, 35-47.	1.6	20
49	The Androgen Receptor Bridges Stem Cell-Associated Signaling Nodes in Prostate Stem Cells. Stem Cells International, 2016, 2016, 1-10.	2.5	9
50	Combined AKT and MEK Pathway Blockade in Pre-Clinical Models of Enzalutamide-Resistant Prostate Cancer. PLoS ONE, 2016, 11, e0152861.	2.5	30
51	Molecular chaperone Hsp27 regulates the Hippo tumor suppressor pathway in cancer. Scientific Reports, 2016, 6, 31842.	3.3	43
52	PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget, 2015, 6, 234-242.	1.8	227
53	Hsp27 Inhibition with OGX-427 Sensitizes Non–Small Cell Lung Cancer Cells to Erlotinib and Chemotherapy. Molecular Cancer Therapeutics, 2015, 14, 1107-1116.	4.1	43
54	Generation 2.5 Antisense Oligonucleotides Targeting the Androgen Receptor and Its Splice Variants Suppress Enzalutamide-Resistant Prostate Cancer Cell Growth. Clinical Cancer Research, 2015, 21, 1675-1687.	7.0	108

#	Article	IF	CITATIONS
55	A low carbohydrate, high protein diet suppresses intratumoral androgen synthesis and slows castration-resistant prostate tumor growth in mice. Journal of Steroid Biochemistry and Molecular Biology, 2015, 150, 35-45.	2.5	22
56	Regulation of tumor cell plasticity by the androgen receptor in prostate cancer. Endocrine-Related Cancer, 2015, 22, R165-R182.	3.1	52
57	Cotargeting Polo-Like Kinase 1 and the Wnt/ \hat{l}^2 -Catenin Signaling Pathway in Castration-Resistant Prostate Cancer. Molecular and Cellular Biology, 2015, 35, 4185-4198.	2.3	29
58	The Placental Gene PEG10 Promotes Progression of Neuroendocrine Prostate Cancer. Cell Reports, 2015, 12, 922-936.	6.4	216
59	Anticancer Activity of a Novel Selective CYP17A1 Inhibitor in Preclinical Models of Castrate-Resistant Prostate Cancer. Molecular Cancer Therapeutics, 2015, 14, 59-69.	4.1	85
60	Combination AZD5363 with Enzalutamide Significantly Delays Enzalutamide-resistant Prostate Cancer in Preclinical Models. European Urology, 2015, 67, 986-990.	1.9	91
61	Hsp27 regulates EGF/βâ€catenin mediated epithelial to mesenchymal transition in prostate cancer. International Journal of Cancer, 2015, 136, E496-507.	5.1	58
62	Inhibition of the HER2-YB1-AR axis with Lapatinib synergistically enhances Enzalutamide anti-tumor efficacy in castration resistant prostate cancer. Oncotarget, 2015, 6, 9086-9098.	1.8	38
63	Trop-2 is up-regulated in invasive prostate cancer and displaces FAK from focal contacts. Oncotarget, 2015, 6, 14318-14328.	1.8	58
64	The Multifaceted Roles of STAT3 Signaling in the Progression of Prostate Cancer. Cancers, 2014, 6, 829-859.	3.7	121
65	Next-generation steroidogenesis inhibitors, dutasteride and abiraterone, attenuate but still do not eliminate androgen biosynthesis in 22RV1 cells in vitro. Journal of Steroid Biochemistry and Molecular Biology, 2014, 144, 436-444.	2.5	14
66	Identification of a Potent Antiandrogen that Targets the BF3 Site of the Androgen Receptor and Inhibits Enzalutamide-Resistant Prostate Cancer. Chemistry and Biology, 2014, 21, 1476-1485.	6.0	59
67	Suppression of Heat Shock Protein 27 Using OGX-427 Induces Endoplasmic Reticulum Stress and Potentiates Heat Shock Protein 90 Inhibitors to Delay Castrate-resistant Prostate Cancer. European Urology, 2014, 66, 145-155.	1.9	70
68	Insulin-like growth factor-I induces CLU expression through Twist1 to promote prostate cancer growth. Molecular and Cellular Endocrinology, 2014, 384, 117-125.	3.2	16
69	Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities (Review). International Journal of Oncology, 2014, 45, 1793-1801.	3.3	142
70	Clusterin inhibition using OGX-011 synergistically enhances zoledronic acid activity in osteosarcoma. Oncotarget, 2014, 5, 7805-7819.	1.8	27
71	Co-targeting Adaptive Survival Pathways. Current Clinical Urology, 2014, , 233-248.	0.0	0
72	Synergistic Targeting of PI3K/AKT Pathway and Androgen Receptor Axis Significantly Delays Castration-Resistant Prostate Cancer Progression <i>In Vivo</i> . Molecular Cancer Therapeutics, 2013, 12, 2342-2355.	4.1	120

#	Article	IF	CITATIONS
73	The Fer tyrosine kinase acts as a downstream interleukin-6 effector of androgen receptor activation in prostate cancer. Molecular and Cellular Endocrinology, 2013, 381, 140-149.	3.2	26
74	Cotargeting Androgen Receptor and Clusterin Delays Castrate-Resistant Prostate Cancer Progression by Inhibiting Adaptive Stress Response and AR Stability. Cancer Research, 2013, 73, 5206-5217.	0.9	64
75	Hsp27 Regulates Epithelial Mesenchymal Transition, Metastasis, and Circulating Tumor Cells in Prostate Cancer. Cancer Research, 2013, 73, 3109-3119.	0.9	182
76	A Novel Antiandrogen, Compound 30, Suppresses Castration-Resistant and MDV3100-Resistant Prostate Cancer Growth <i>In Vitro</i> and <i>In Vivo</i> . Molecular Cancer Therapeutics, 2013, 12, 567-576.	4.1	94
77	Dual inhibition of autophagy and the AKT pathway in prostate cancer. Autophagy, 2013, 9, 1119-1120.	9.1	45
78	Rational cotargeting of Pim-1 and Akt in prostate cancer. Expert Review of Anticancer Therapy, 2013, 13, 937-939.	2.4	4
79	Blocked Autophagy Using Lysosomotropic Agents Sensitizes Resistant Prostate Tumor Cells to the Novel Akt Inhibitor AZD5363. Clinical Cancer Research, 2013, 19, 833-844.	7.0	86
80	Cotargeting Stress-Activated Hsp27 and Autophagy as a Combinatorial Strategy to Amplify Endoplasmic Reticular Stress in Prostate Cancer. Molecular Cancer Therapeutics, 2012, 11, 1661-1671.	4.1	59
81	Targeted Therapies in Metastatic Castration-Resistant Prostate Cancer. Urologic Clinics of North America, 2012, 39, 517-531.	1.8	14
82	Clusterin Mediates TGF-β–Induced Epithelial–Mesenchymal Transition and Metastasis via Twist1 in Prostate Cancer Cells. Cancer Research, 2012, 72, 5261-5272.	0.9	135
83	Small heat shock proteins in cancer therapy and prognosis. International Journal of Biochemistry and Cell Biology, 2012, 44, 1646-1656.	2.8	153
84	From sequence to molecular pathology, and a mechanism driving the neuroendocrine phenotype in prostate cancer. Journal of Pathology, 2012, 227, 286-297.	4.5	161
85	Discovery of Aryloxy Tetramethylcyclobutanes as Novel Androgen Receptor Antagonists. Journal of Medicinal Chemistry, 2011, 54, 7693-7704.	6.4	55
86	Clusterin Is a Critical Downstream Mediator of Stress-Induced YB-1 Transactivation in Prostate Cancer. Molecular Cancer Research, 2011, 9, 1755-1766.	3.4	63
87	Clusterin Inhibition Using OCX-011 Synergistically Enhances Hsp90 Inhibitor Activity by Suppressing the Heat Shock Response in Castrate-Resistant Prostate Cancer. Cancer Research, 2011, 71, 5838-5849.	0.9	84
88	Transcription Factor Stat5 Knockdown Enhances Androgen Receptor Degradation and Delays Castration-Resistant Prostate Cancer Progression <i>In vivo</i> . Molecular Cancer Therapeutics, 2011, 10, 347-359.	4.1	57
89	A Novel HSP90 Inhibitor Delays Castrate-Resistant Prostate Cancer without Altering Serum PSA Levels and Inhibits Osteoclastogenesis. Clinical Cancer Research, 2011, 17, 2301-2313.	7.0	57
90	Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance. Prostate, 2010, 70, 239-251.	2.3	46

#	Article	IF	CITATIONS
91	Hsp27 Promotes Insulin-Like Growth Factor-I Survival Signaling in Prostate Cancer via p90Rsk-Dependent Phosphorylation and Inactivation of BAD. Cancer Research, 2010, 70, 2307-2317.	0.9	74
92	Targeting the Cytoprotective Chaperone, Clusterin, for Treatment of Advanced Cancer. Clinical Cancer Research, 2010, 16, 1088-1093.	7.0	123
93	Clusterin Facilitates COMMD1 and I-κB Degradation to Enhance NF-κB Activity in Prostate Cancer Cells. Molecular Cancer Research, 2010, 8, 119-130.	3.4	115
94	TAF1 Differentially Enhances Androgen Receptor Transcriptional Activity via Its N-Terminal Kinase and Ubiquitin-Activating and -Conjugating Domains. Molecular Endocrinology, 2010, 24, 696-708.	3.7	39
95	The Fer Tyrosine Kinase Cooperates with Interleukin-6 to Activate Signal Transducer and Activator of Transcription 3 and Promote Human Prostate Cancer Cell Growth. Molecular Cancer Research, 2009, 7, 142-155.	3.4	50
96	Targeting prostate cancer with HTIâ€286, a synthetic analog of the marine sponge product hemiasterlin. International Journal of Cancer, 2008, 122, 2368-2376.	5.1	32
97	Clusterin knockdown using the antisense oligonucleotide OGXâ€011 reâ€sensitizes docetaxelâ€refractory prostate cancer PCâ€3 cells to chemotherapy. BJU International, 2008, 102, 389-397.	2.5	109
98	Intravesically administered antisense oligonucleotides targeting heatâ€shock proteinâ€27 inhibit the growth of nonâ€muscleâ€invasive bladder cancer. BJU International, 2008, 102, 610-616.	2.5	49
99	Custirsen (OGX-011): a second-generation antisense inhibitor of clusterin for the treatment of cancer. Expert Opinion on Investigational Drugs, 2008, 17, 1955-1962.	4.1	43
100	Cooperative Interactions between Androgen Receptor (AR) and Heat-Shock Protein 27 Facilitate AR Transcriptional Activity. Cancer Research, 2007, 67, 10455-10465.	0.9	224
101	Links between Fer tyrosine kinase expression levels and prostate cell proliferation. Molecular and Cellular Endocrinology, 2000, 159, 63-77.	3.2	48