Chencan Du

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632902/publications.pdf

Version: 2024-02-01

159358 223531 3,542 164 30 46 citations h-index g-index papers 165 165 165 3016 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design and Scaling Up of Microchemical Systems: A Review. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 285-305.	3.3	208
2	Microflow extraction: A review of recent development. Chemical Engineering Science, 2017, 169, 18-33.	1.9	175
3	Liquid–liquid microflow reaction engineering. Reaction Chemistry and Engineering, 2017, 2, 611-627.	1.9	90
4	Mixture Absorption System of Monoethanolamineâ^'Triethylene Glycol for CO ₂ Capture. Industrial & Description of Control o	1.8	85
5	Green Synthesis of Ag–TiO ₂ Supported on Porous Glass with Enhanced Photocatalytic Performance for Oxidative Desulfurization and Removal of Dyes under Visible Light. ACS Sustainable Chemistry and Engineering, 2018, 6, 13276-13286.	3.2	78
6	Magnetic titanium dioxide based nanomaterials: synthesis, characteristics, and photocatalytic application in pollutant degradation. Journal of Materials Chemistry A, 2015, 3, 17511-17524.	5.2	77
7	Controllable Preparation of Nanoparticles by Drops and Plugs Flow in a Microchannel Device. Langmuir, 2008, 24, 4194-4199.	1.6	72
8	Continuous Synthesis of Nanocrystals via Flow Chemistry Technology. Small, 2020, 16, e1902828.	5.2	68
9	Polyethylenimine-impregnated siliceous mesocellular foam particles as high capacity CO2 adsorbents. RSC Advances, 2012, 2, 6509.	1.7	67
10	Intensification of fast exothermic reaction by gas agitation in a microchemical system. AICHE Journal, 2014, 60, 2724-2730.	1.8	51
11	In situ preparation of hydrophobic CaCO3 nanoparticles in a gas–liquid microdispersion process. Particuology, 2013, 11, 421-427.	2.0	46
12	Pressure drop-based determination of dynamic interfacial tension of droplet generation process in T-junction microchannel. Microfluidics and Nanofluidics, 2015, 18, 503-512.	1.0	46
13	Microdroplet coalescences at microchannel junctions with different collision angles. AICHE Journal, 2013, 59, 643-649.	1.8	45
14	CFD Simulation of Droplet Formation in Microchannels by a Modified Level Set Method. Industrial & Level Set Method. Industri	1.8	45
15	A Size-Controllable Precipitation Method to Prepare CeO ₂ Nanoparticles in a Membrane Dispersion Microreactor. Industrial & Dispersion M	1.8	44
16	Strategy for Scalingâ€up of a Microsieve Dispersion Reactor. Chemical Engineering and Technology, 2014, 37, 2116-2122.	0.9	42
17	Liquid–liquid microflows and mass transfer performance in slit-like microchannels. Chemical Engineering Journal, 2014, 258, 34-42.	6.6	40
18	Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes. Langmuir, 2016, 32, 3174-3185.	1.6	38

#	Article	IF	Citations
19	Hydrodynamics and mass transfer of gas–liquid flow in micropacked bed reactors with metal foam packing. AICHE Journal, 2020, 66, e16803.	1.8	38
20	Liquidâ^'Liquid Equilibria for Benzene + Cyclohexane + 1-Butyl-3-methylimidazolium Hexafluorophosphate. Journal of Chemical & Engineering Data, 2010, 55, 510-512.	1.0	37
21	A one-step microfluidic approach for controllable preparation of nanoparticle-coated patchy microparticles. Microfluidics and Nanofluidics, 2012, 13, 491-498.	1.0	37
22	Pervaporation separation of methyl tert-butyl ether/methanol mixtures using a high-performance blended membrane. Journal of Applied Polymer Science, 1997, 64, 875-882.	1.3	36
23	Preparation of Highly Dispersed and Small-Sized ZnO Nanoparticles in a Membrane Dispersion Microreactor and Their Photocatalytic Degradation. Industrial & Engineering Chemistry Research, 2013, 52, 5683-5690.	1.8	36
24	Controllable Preparation of SiO ₂ Nanoparticles Using a Microfiltration Membrane Dispersion Microreactor. Industrial & Engineering Chemistry Research, 2011, 50, 8536-8541.	1.8	34
25	Microreaction Technology for Synthetic Chemistry. Chinese Journal of Chemistry, 2019, 37, 161-170.	2.6	34
26	Lattice-Boltzmann method for the simulation of multiphase mass transfer and reaction of dilute species. Physical Review E, 2014, 89, 053308.	0.8	33
27	A size-controllable preparation method for indium tin oxide particles using a membrane dispersion micromixer. Chemical Engineering Journal, 2016, 293, 1-8.	6.6	33
28	Numerical Study of Surfactant Dynamics during Emulsification in a T-Junction Microchannel. Langmuir, 2018, 34, 4980-4990.	1.6	33
29	Determination of kinetics of CO ₂ absorption in solutions of 2â€aminoâ€2â€methylâ€1â€propanol using a microfluidic technique. AICHE Journal, 2015, 61, 4358-4366.	1.8	32
30	Reaction kinetics determination based on microfluidic technology. Chinese Journal of Chemical Engineering, 2022, 41, 49-72.	1.7	31
31	Experimental study of microbubble coalescence in a T-junction microfluidic device. Microfluidics and Nanofluidics, 2012, 12, 715-722.	1.0	30
32	Novel One-Step Synthesis Process from Cyclohexanone to Caprolactam in Trifluoroacetic Acid. Industrial & Caprolactam in Trifluoroacetic Acid.	1.8	30
33	Preparation of highly dispersed precipitated nanosilica in a membrane dispersion microreactor. Chemical Engineering Journal, 2014, 258, 327-333.	6.6	30
34	Kinetic study and intensification of acetyl guaiacol nitration with nitric acidâ€"acetic acid system in a microreactor. Journal of Flow Chemistry, 2016, 6, 309-314.	1.2	30
35	Kinetics study of acrylic acid polymerization with a microreactor platform. Chemical Engineering Journal, 2016, 284, 233-239.	6.6	30
36	Immobilization of Penicillin G Acylase on Mesostructured Cellular Foams through a Cross-Linking Network Method. Industrial & Samp; Engineering Chemistry Research, 2014, 53, 1947-1953.	1.8	29

#	Article	IF	Citations
37	Heat-Transfer Performance of a Liquidâ^'Liquid Microdispersed System. Industrial & Engineering Chemistry Research, 2008, 47, 9754-9758.	1.8	28
38	Phase separation of parallel laminar flow for aqueous two phase systems in branched microchannel. Microfluidics and Nanofluidics, 2011, 10, 1079-1086.	1.0	28
39	Bionic system for countercurrent multi-stage micro-extraction. RSC Advances, 2012, 2, 10817.	1.7	28
40	Preparation of Monodispersed Uniform Silica Spheres with Large Pore Size for Fast Adsorption of Proteins. Industrial & Description of Repair (1997) Research, 2010, 49, 4162-4168.	1.8	27
41	Preparation of Pseudoboehmite with a Large Pore Volume and a Large Pore Size by Using a Membrane-Dispersion Microstructured Reactor through the Reaction of CO ₂ and a NaAlO ₂ Solution. Industrial & Engineering Chemistry Research, 2011, 50, 3889-3894.	1.8	27
42	Gas/liquid/liquid threeâ€phase flow patterns and bubble/droplet size laws in a double Tâ€junction microchannel. AICHE Journal, 2015, 61, 1722-1734.	1.8	27
43	Hydration of acrylonitrile to produce acrylamide using biocatalyst in a membrane dispersion microreactor. Bioresource Technology, 2014, 169, 416-420.	4.8	26
44	Kinetic study of reactions of aniline and benzoyl chloride in a microstructured chemical system. AICHE Journal, 2015, 61, 3804-3811.	1.8	25
45	Green synthesis and enhanced photocatalytic activity of Ce-doped TiO2 nanoparticles supported on porous glass. Particuology, 2017, 34, 103-109.	2.0	25
46	Highly efficient synthesis of polyvinyl butyral (PVB) using a membrane dispersion microreactor system and recycling reaction technology. Green Chemistry, 2017, 19, 2155-2163.	4.6	25
47	An Efficient Chitosan/Silica Composite Core–Shell Microspheres-Supported Pd Catalyst for Aryl Iodides Sonogashira Coupling Reactions. Industrial & Engineering Chemistry Research, 2017, 56, 143-152.	1.8	25
48	Ultra-thin liquid film extraction based on a gas–liquid–liquid double emulsion in a microchannel device. RSC Advances, 2015, 5, 6470-6474.	1.7	24
49	Liquid–liquid twoâ€phase flow in pore array microstructured devices for scalingâ€up of nanoparticle preparation. AICHE Journal, 2009, 55, 3041-3051.	1.8	23
50	Mixing Performance and Application of a Three-Dimensional Serpentine Microchannel Reactor with a Periodic Vortex-Inducing Structure. Industrial & Engineering Chemistry Research, 2019, 58, 13357-13365.	1.8	23
51	Highâ€frequency formation of bubble with short length in a capillary embedded step Tâ€junction microdevice. AICHE Journal, 2021, 67, e17376.	1.8	23
52	Continuous Flow Synthesis of Polystyrene Nanoparticles via Emulsion Polymerization Stabilized by a Mixed Nonionic and Anionic Emulsifier. Industrial & Engineering Chemistry Research, 2017, 56, 9489-9495.	1.8	22
53	Determination of Dynamic Interfacial Tension during the Generation of Tiny Droplets in the Liquid–Liquid Jetting Flow Regime. Langmuir, 2020, 36, 13633-13641.	1.6	22
54	Preparation of Uniform Microcapsules Containing 1-Octanol for Caprolactam Extraction. Industrial & Extraction Chemistry Research, 2009, 48, 4507-4513.	1.8	21

#	Article	IF	Citations
55	TiO(OH)2 \hat{a} e" highly effective catalysts for optimizing CO2 desorption kinetics reducing CO2 capture cost: A new pathway. Scientific Reports, 2017, 7, 2943.	1.6	21
56	Controllable Preparation and Catalytic Performance of Heterogeneous Fenton-like α-Fe ₂ O ₃ /Crystalline Glass Microsphere Catalysts. Industrial & Engineering Chemistry Research, 2017, 56, 13751-13759.	1.8	21
57	Synthesizing bromobutyl rubber by a microreactor system. AICHE Journal, 2017, 63, 1002-1009.	1.8	21
58	Measurement of internal flow field during droplet formation process accompanied with mass transfer. Microfluidics and Nanofluidics, 2015, 19, 757-766.	1.0	20
59	Study on the transient interfacial tension in a microfluidic droplet formation coupling interphase mass transfer process. AICHE Journal, 2016, 62, 2542-2549.	1.8	20
60	Organocatalyzed Beckmann rearrangement of cyclohexanone oxime in a microreactor: Kinetic model and product inhibition. AICHE Journal, 2018, 64, 571-577.	1.8	20
61	Kinetics determination of fast exothermic reactions with infrared thermography in a microreactor. Journal of Flow Chemistry, 2020, 10, 219-226.	1.2	20
62	Geometric Effect on Gas–Liquid Bubbly Flow in Capillary-Embedded T-Junction Microchannels. Industrial & Engineering Chemistry Research, 2021, 60, 4735-4744.	1.8	20
63	In situ preparation of Pd/Al2O3–SiO2 composite microspheres by combining a sol–gel process and precipitation process in a microchannel. Chemical Engineering Journal, 2014, 236, 293-299.	6.6	19
64	Ultrafast, Continuous and Shape-Controlled Preparation of CeO ₂ Nanostructures: Nanorods and Nanocubes in a Microfluidic System. Industrial & Engineering Chemistry Research, 2018, 57, 7525-7532.	1.8	19
65	Caprolactam as a New Additive To Enhance Alkylation of Isobutane and Butene in H ₂ SO ₄ . Industrial & Engineering Chemistry Research, 2016, 55, 12818-12824.	1.8	18
66	High-throughput preparation of uniform tiny droplets in multiple capillaries embedded stepwise microchannels. Journal of Flow Chemistry, 2020, 10, 271-282.	1.2	18
67	Determination of the kinetics of chlorobenzene nitration using a homogeneously continuous microflow. AICHE Journal, 2022, 68, .	1.8	18
68	Taylor Bubble Generation Rules in Liquids with a Higher Viscosity in a T-Junction Microchannel. Industrial & Engineering Chemistry Research, 2022, 61, 2623-2632.	1.8	18
69	Catalytic Kinetics of Dibenzothiophene Oxidation with the Combined Catalyst of Quaternary Ammonium Bromide and Phosphotungstic Acid. Industrial & Engineering Chemistry Research, 2007, 46, 6221-6227.	1.8	17
70	Subcritical Water Treatment: A Simple Method to Prepare Porous Glass with a Core–Shell Structure. Journal of the American Ceramic Society, 2008, 91, 103-109.	1.9	17
71	Growth of Aragonite CaCO ₃ Whiskers in a Microreactor with Calcium Dodecyl Benzenesulfonate as a Control Agent. Industrial & Engineering Chemistry Research, 2015, 54, 7131-7140.	1.8	17
72	Precipitation Preparation of High Surface Area and Porous Nanosized ZnO by Continuous Gas-Based Impinging Streams in Unconfined Space. Industrial & Engineering Chemistry Research, 2016, 55, 11943-11949.	1.8	17

#	Article	IF	Citations
73	Microdroplet Generation with Dilute Surfactant Concentration in a Modified T-Junction Device. Industrial & Device Chemistry Research, 2017, 56, 12131-12138.	1.8	17
74	Preparation of Large-Pore-Volume Î ³ -Alumina Nanofibers with a Narrow Pore Size Distribution in a Membrane Dispersion Microreactor. Industrial & Engineering Chemistry Research, 2017, 56, 8888-8894.	1.8	17
75	Process Intensification of Sulfuric Acid Alkylation Using a Microstructured Chemical System. Industrial & Engineering Chemistry Research, 2018, 57, 3523-3529.	1.8	17
76	Preparation of In(OH) ₃ and In ₂ O ₃ Nanorods through a Novel Hydrothermal Method and the Effect of Sn Dopant on Crystal Structures. Industrial & Samp; Engineering Chemistry Research, 2018, 57, 2882-2889.	1.8	17
77	Preparation of Uniform \hat{I}^3 -Alumina Microspheres with Large Pore Volumes in a Coaxial Microchannel. Industrial & Engineering Chemistry Research, 2018, 57, 11636-11644.	1.8	17
78	Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Research, 2020, 13, 2837-2846.	5.8	17
79	Selective Adsorption of C ₆ , C ₈ , and C ₁₀ Linear α-Olefins from Binary Liquid-Phase Olefin/Paraffin Mixtures Using Zeolite Adsorbents: Experiment and Simulations. Langmuir, 2020, 36, 8597-8609.	1.6	17
80	A consecutive microreactor system for the synthesis of caprolactam with high selectivity. AICHE Journal, 2015, 61, 1959-1967.	1.8	16
81	Hydrodynamics and Mass Transfer in a Countercurrent Multistage Microextraction System. Industrial & Lamp; Engineering Chemistry Research, 2016, 55, 6006-6017.	1.8	16
82	Synthesis of Micro–Nano-assembled Manganese Carbonate via Aqueous Precipitation Assisted by Ethanol. Industrial & Engineering Chemistry Research, 2017, 56, 10036-10043.	1.8	16
83	Controllable preparation of highly uniform γ-alumina microspheres via the sol–gel route for alkoxide in a coaxial microchannel. Journal of Sol-Gel Science and Technology, 2020, 93, 391-401.	1.1	16
84	Liquid–Liquid Mass Transfer Enhancement in Milliscale Packed Beds. Industrial & Description (Chemistry Research, 2020, 59, 4048-4057.	1.8	16
85	Kinetic study of $\langle i \rangle$ o $\langle i \rangle$ -nitrotoluene nitration in a homogeneously continuous microflow. Reaction Chemistry and Engineering, 2021, 7, 111-122.	1.9	16
86	Organocatalyzed Beckmann Rearrangement of Cyclohexanone Oxime in a Microchemical System. Organic Process Research and Development, 2015, 19, 352-356.	1.3	15
87	Manipulable Formation of Ferrofluid Droplets in Y-Shaped Flow-Focusing Microchannels. Industrial & Lamp; Engineering Chemistry Research, 2019, 58, 19226-19238.	1.8	15
88	Chlorohydrination of Allyl Chloride to Dichloropropanol in a Microchemical System. Industrial & Engineering Chemistry Research, 2012, 51, 14685-14691.	1.8	14
89	A facile pressure drop measurement system and its applications to gas–liquid microflows. Microfluidics and Nanofluidics, 2013, 15, 715-724.	1.0	14
90	Preparation of poly(p-phenylene terephthalamide) in a microstructured chemical system. RSC Advances, 2015, 5, 64055-64064.	1.7	14

#	Article	IF	Citations
91	Bubble generation rules in microfluidic devices with microsieve array as dispersion medium. AICHE Journal, 2015, 61, 1663-1676.	1.8	14
92	Kinetic study on selective extraction of HCl and H3PO4 in a microfluidic device. Chinese Journal of Chemical Engineering, 2016, 24, 221-225.	1.7	14
93	Microfluidic electrosynthesis of thiuram disulfides. Green Chemistry, 2021, 23, 582-591.	4.6	14
94	Scaling up microreactors for kilogramâ€scale synthesis of piperacillin: Experiments and computational fluid dynamics simulations. AICHE Journal, 2021, 67, e17231.	1.8	14
95	Synthesis of single-crystal dendritic iron hydroxyl phosphate as a Fenton catalyst. CrystEngComm, 2013, 15, 9104.	1.3	13
96	Direct Precipitation for a Continuous Synthesis of Nanoiron Phosphate with High Purity. Industrial & Engineering Chemistry Research, 2014, 53, 6723-6729.	1.8	13
97	Droplet formation of H ₂ SO ₄ /alkane system in a Tâ€junction microchannel: Gravity effect. AICHE Journal, 2016, 62, 4564-4573.	1.8	13
98	Synthesis of polystyrene latex via emulsion polymerization with poly(vinyl alcohol) as sole stabilizer. Journal of Applied Polymer Science, 2017, 134, 45111.	1.3	13
99	A modified mixedâ€acid catalytic system for Beckmann rearrangement of cyclohexanone oxime. AICHE Journal, 2019, 65, e16603.	1.8	13
100	Kinetics on thermal dissociation and oligomerization of dicyclopentadiene in a high temperature & Lamp; pressure microreactor. Chemical Engineering Science, 2020, 228, 115892.	1.9	13
101	Formation Mechanism of Monodispersed Polysilsesquioxane Spheres in One-Step Sol–Gel Method. Langmuir, 2021, 37, 5878-5885.	1.6	13
102	Liquidâ^'Liquid Equilibria of the Quaternary System Water + Caprolactam + 1-Octanol + Ammonium Sulfate. Journal of Chemical & Engineering Data, 2007, 52, 851-855.	1.0	12
103	Preparation of Calcium Benzene Sulfonate Detergents by a Microdispersion Process. Industrial & Engineering Chemistry Research, 2013, 52, 10699-10706.	1.8	12
104	Cationic polymerization of isobutylene catalysed by AlCl ₃ with multiple nucleophilic reagents. RSC Advances, 2016, 6, 97983-97989.	1.7	12
105	Investigation of dynamic surface tension in gas–liquid absorption using a microflow interfacial tensiometer. Reaction Chemistry and Engineering, 2017, 2, 232-238.	1.9	12
106	Calcium Stearate as an Acid Scavenger for Synthesizing High Concentrations of Bromobutyl Rubber in a Microreactor System. Industrial & Engineering Chemistry Research, 2018, 57, 3898-3907.	1.8	12
107	Controllability and flexibility in particle manufacturing of a segmented microfluidic device with passive picoinjection. AICHE Journal, 2018, 64, 3817-3825.	1.8	12
108	Determination of the Liquid/Liquid Mass Transfer Coefficient for Each Phase in Microchannels. Industrial & Determination of the Liquid/Liquid Mass Transfer Coefficient for Each Phase in Microchannels.	1.8	12

#	Article	IF	CITATIONS
109	Hydrogen Production via Model Diesel Steam Reforming over a High-Performance Ni/Ce _{0.75} La _{0.25} O _{2â~Î} -γ-Al ₂ O ₃ Catalyst with Oxygen Vacancies. Industrial & Dieser Engineering Chemistry Research, 2020, 59, 15188-15201.	1.8	12
110	Continuous and Ultrafast Preparation of In(OH)3, InOOH, and In2O3 Series in a Microreactor for Gas Sensors. Industrial & Engineering Chemistry Research, 2019, 58, 2206-2216.	1.8	11
111	Manipulation and Control of Structure and Size of Inorganic Nanomaterials in Microchemical Systems. Chemical Engineering and Technology, 2019, 42, 1996-2008.	0.9	11
112	Membrane extraction for sulfanilic acid removal from waste water. Separation Science and Technology, 2002, 37, 1163-1177.	1.3	10
113	Catalytic hydrogenation of 2-ethylanthraquinone using an in situ synthesized Pd catalyst. RSC Advances, 2016, 6, 23942-23948.	1.7	10
114	Kinetics Study of Sulfuric Acid Alkylation of Isobutane and Butene Using a Microstructured Chemical System. Industrial & Engineering Chemistry Research, 2019, 58, 1150-1158.	1.8	10
115	Multiple reuses of Rhodococcus ruber TH3 free cells to produce acrylamide in a membrane dispersion microreactor. Bioresource Technology, 2015, 187, 198-204.	4.8	9
116	Determination of the Micromixing Scale in a Microdevice by Numerical Simulation and Experiments. Chemical Engineering and Technology, 2016, 39, 909-917.	0.9	9
117	A kinetic study of the biological catalytic hydration of acrylonitrile to acrylamide. Chemical Engineering Journal, 2017, 317, 699-706.	6.6	9
118	Green Synthesis of Thiuram Disulfides with CO ₂ as an Acid Agent for Sustainable Development. Industrial & Engineering Chemistry Research, 2018, 57, 16572-16578.	1.8	9
119	Interactions between CO ₂ -Responsive Switchable Emulsion Droplets Determined by Using Optical Tweezers. Langmuir, 2020, 36, 4600-4606.	1.6	9
120	Whole-cell biocatalytic synthesis of S-(4-chlorophenyl)-(pyridin-2-yl) methanol in a liquid–liquid biphasic microreaction system. Bioresource Technology, 2021, 330, 125022.	4.8	9
121	Visual study of mass transfer characterization in the process of biological catalytic hydration of acrylonitrile using pendant drop method. RSC Advances, 2015, 5, 79164-79171.	1.7	8
122	Impurity Formation in the Beckmann Rearrangement of Cyclohexanone Oxime to Yield $\hat{l}\mu$ -Caprolactam. Industrial & Engineering Chemistry Research, 2017, 56, 14207-14213.	1.8	8
123	Intensification of the Sulfuric Acid Alkylation Process with Trifluoroacetic Acid. AICHE Journal, 2019, 65, 113-119.	1.8	8
124	Continuous, homogeneous and rapid synthesis of 4-bromo-3-methylanisole in a modular microreaction system. Chinese Journal of Chemical Engineering, 2020, 28, 2092-2098.	1.7	8
125	Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method. Nano Research, 2022, 15, 1199-1204.	5.8	8
126	Hydrodynamics and Scaling Laws of Gas–Liquid Taylor Flow in Viscous Liquids in a Microchannel. Industrial & Chemistry Research, 2022, 61, 10275-10284.	1.8	8

#	Article	IF	CITATIONS
127	Generation of Poly(isobutene- <i>co</i> -isoprene) in a Microflow Device. Industrial & Device amp; Engineering Chemistry Research, 2016, 55, 1215-1220.	1.8	7
128	Controllable Preparation and Catalytic Performance of Magnetic Fe3O4@CeO2-Polysulfone Nanocomposites with Core–Shell Structure. Industrial & Engineering Chemistry Research, 2018, 57, 15039-15045.	1.8	7
129	Continuous synthesis of tetraethyl thiuram disulfide with CO2 as acid agent in a gas-liquid microdispersion system. Journal of Flow Chemistry, 2019, 9, 211-220.	1.2	7
130	Preparation of 2,3-Epoxypropyl Neodecanoate: Process Optimization and Mechanism Discussion. Industrial & Discussion Chemistry Research, 2020, 59, 19168-19176.	1.8	7
131	Experimental and modelâ€based study of biohydration of acrylonitrile to acrylamide in a microstructured chemical system. AICHE Journal, 2020, 66, e16298.	1.8	7
132	A novel method for fast and continuous preparation of superfine titanium dioxide nanoparticles in microfluidic system. Particuology, 2022, 60, 61-67.	2.0	7
133	Microdroplet-based continuous countercurrent extraction with high phase ratio. Separation and Purification Technology, 2022, 295, 121269.	3.9	7
134	Controllable preparation of uniform polystyrene nanospheres with premix membrane emulsification. Journal of Applied Polymer Science, 2013, 129, 1202-1211.	1.3	6
135	In Situ Removal of HBr via Microdroplets for High Selectivity Bromobutyl Rubber Synthesis in a Microreaction System. Industrial & Engineering Chemistry Research, 2018, 57, 10883-10892.	1.8	6
136	Effects of interface adsorption of Rhodococcus ruber TH3 cells on the biocatalytic hydration of acrylonitrile to acrylamide. Bioprocess and Biosystems Engineering, 2018, 41, 931-938.	1.7	6
137	Remarkable improvement of epoxide ring-opening reaction efficiency and selectivity with water as a green regulator. Reaction Chemistry and Engineering, 2021, 6, 2159-2169.	1.9	6
138	Continuous synthesis of <scp>1â€ethoxy</scp> â€2,3â€difluoroâ€4â€iodoâ€benzene in a microreactor system an the Gaussian and <scp>computational fluid dynamics</scp> simulations. AICHE Journal, 2021, 67, e17217.	nd _{.8}	6
139	Direct imaging and mechanism study of C6 α-olefin adsorption on faujasite and Linde Type A zeolites. Nano Research, 2022, 15, 5322-5330.	5.8	6
140	Determination of Time-Evolving interfacial tension and ionic surfactant adsorption kinetics in microfluidic droplet formation process. Journal of Colloid and Interface Science, 2022, 617, 106-117.	5.0	6
141	Effect of Viscosity on Liquid–Liquid Slug Flow in a Step T-Junction Microchannel. Industrial & Engineering Chemistry Research, 2022, 61, 8333-8345.	1.8	6
142	Preparation of microcapsule-supported Pd catalyst using a microfluidic platform. Chinese Journal of Catalysis, 2013, 34, 1635-1643.	6.9	5
143	Facile synthesis of a novel CeO2/glass bead catalyst with enhanced catalytic oxidation performance. RSC Advances, 2016, 6, 112413-112419.	1.7	5
144	A chemical looping technology for the synthesis of 2,2′-dibenzothiazole disulfide. Green Chemistry, 2020, 22, 2778-2785.	4.6	5

#	Article	IF	Citations
145	Experimental and DFT studies on diesel-steam-reforming to hydrogen over a bimetallic Rh–Ni-based MgO-Al2O3 microsphere catalyst. Fuel, 2022, 318, 123632.	3.4	5
146	Development of Twoâ€point Dynamic Method for Evaluating Extraction Columns. Canadian Journal of Chemical Engineering, 2004, 82, 471-477.	0.9	4
147	Back Extraction of HCl from TOA Dissolved in N-Octanol by Aqueous Ammonia in a Microchannel Device. Solvent Extraction and Ion Exchange, 2016, 34, 60-73.	0.8	4
148	Kinetic Study of Reactions of Aniline and Benzoyl Chloride Using NH ₃ as Acid Absorbent in a Microstructured Chemical System. Industrial & Engineering Chemistry Research, 2016, 55, 6310-6316.	1.8	4
149	Continuous Removal of Lead from Aqueous Solutions by Ca(II) Imprinted Chitosan Microspheres Packed Column. Separation Science and Technology, 2015, 50, 1127-1134.	1.3	3
150	Liquid–Liquid Microdispersion Method for the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of the Synthesis of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of Extra-Framework Ti Species. Industrial & Description of TS-1 Free of	1.8	3
151	Numerical simulation and experimental investigation of multiphase mass transfer process for industrial applications in China. Reviews in Chemical Engineering, 2019, 36, 187-214.	2.3	3
152	Investigation of the Nucleation and Initial Growth of Nanosilica Using In Situ Small-Angle X-ray Scattering and Reactive Molecular Dynamics Simulation. Journal of Physical Chemistry C, 2020, 124, 21853-21866.	1.5	3
153	A Much Cleaner Oxidation Process for 2,2′-Dibenzothiazole Disulfide Synthesis Catalyzed by Phosphotungstic Acid. Industrial & Engineering Chemistry Research, 2022, 61, 207-214.	1.8	3
154	Controllable Hydrothermal Conversion from Ni-Co-Mn Carbonate Nanoparticles to Microspheres. Crystals, 2016, 6, 156.	1.0	2
155	Ultra-low formation of octahydrophenazine in the Beckmann rearrangement of cyclohexanone oxime using a microreactor. Reaction Chemistry and Engineering, 2019, 4, 1991-1999.	1.9	2
156	Preparation of large In(OH)3 and In2O3 particles through a seed-mediated growth method in a microreactor. Particuology, 2020, 49, 1-8.	2.0	2
157	Reaction Pathway and Selectivity Control of Tetraethyl Thiuram Disulfide Synthesis with NaHCO ₃ as a pH Regulator. ACS Omega, 2020, 5, 23736-23742.	1.6	2
158	Investigation of molecular interactions in the complex formation of tartaric acid derivatives with di(2-ethylhexyl) phosphoric acid. Science in China Series B: Chemistry, 2008, 51, 887-892.	0.8	1
159	A Novel Hollow-Fiber Membrane Embedded Co-axial Microdevice for Simultaneous Extraction and Stripping. Solvent Extraction and Ion Exchange, 2020, 38, 103-119.	0.8	1
160	Main Reaction Network and Kinetics in the Synthesis of 2,2′-Dibenzothiazole Disulfide. Industrial & Engineering Chemistry Research, 2021, 60, 10094-10100.	1.8	1
161	Green and sustainable synthesis of poly ($\hat{\Gamma}$ -valerolactone) with a TBD catalyzed ring-opening polymerization reaction. Reaction Chemistry and Engineering, 2021, 7, 76-83.	1.9	1
162	Highly efficient twoâ€stage ringâ€opening of epichlorohydrin with carboxylic acid in a microreaction system. AICHE Journal, 2022, 68, .	1.8	1

CHENCAN DU

#	Article	IF	CITATIONS
163	Organocatalyzed Beckmann Rearrangement of Cyclohexanone Oxime by Trifluoroacetic Anhydride in Microreactors. Industrial & Damp; Engineering Chemistry Research, 0, , .	1.8	1
164	Continuous-flow synthesis of (E)-2-Hexenal intermediates using a two-stage microreactor system. Journal of Flow Chemistry, 2020, 10, 661-672.	1.2	0