Maria Cristina Collivignarelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632865/publications.pdf

Version: 2024-02-01

83 papers 2,619 citations

236612 25 h-index 205818 48 g-index

84 all docs 84 docs citations

84 times ranked 3362 citing authors

#	Article	IF	CITATIONS
1	Lockdown for CoViD-2019 in Milan: What are the effects on air quality?. Science of the Total Environment, 2020, 732, 139280.	3.9	438
2	Treatments for color removal from wastewater: State of the art. Journal of Environmental Management, 2019, 236, 727-745.	3.8	225
3	Legislation for the Reuse of Biosolids on Agricultural Land in Europe: Overview. Sustainability, 2019, 11, 6015.	1.6	159
4	Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability, 2018, 10, 86.	1.6	156
5	Biosolids: What are the different types of reuse?. Journal of Cleaner Production, 2019, 238, 117844.	4.6	117
6	SARS-CoV-2 in sewer systems and connected facilities. Chemical Engineering Research and Design, 2020, 143, 196-203.	2.7	75
7	What Advanced Treatments Can Be Used to Minimize the Production of Sewage Sludge in WWTPs?. Applied Sciences (Switzerland), 2019, 9, 2650.	1.3	74
8	Removal of non-ionic and anionic surfactants from real laundry wastewater by means of a full-scale treatment system. Chemical Engineering Research and Design, 2019, 132, 105-115.	2.7	55
9	The Production of Sustainable Concrete with the Use of Alternative Aggregates: A Review. Sustainability, 2020, 12, 7903.	1.6	55
10	Decolorization and biodegradability of a real pharmaceutical wastewater treated by H2O2-assisted photoelectrocatalysis on TiO2 meshes. Journal of Hazardous Materials, 2020, 387, 121668.	6.5	53
11	Valorization of agro-industry residues in the building and environmental sector: A review. Waste Management and Research, 2020, 38, 487-513.	2.2	48
12	On the reliability of reusing bottom ash from municipal solid waste incineration as aggregate in concrete. Composites Part B: Engineering, 2014, 58, 502-509.	5.9	45
13	H2O2 Based Oxidation Processes for the Treatment of Real High Strength Aqueous Wastes. Sustainability, 2017, 9, 244.	1.6	44
14	Sewage sludge treatment in a thermophilic membrane reactor (TMR): factors affecting foam formation. Environmental Science and Pollution Research, 2017, 24, 2316-2325.	2.7	38
15	Electrolytic Recovery of Nickel and Copper from Acid Pickling Solutions Used to Treat Metal Surfaces. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	37
16	Treatment of high strength pharmaceutical wastewaters in a Thermophilic Aerobic MembraneÂReactor (TAMR). Water Research, 2014, 63, 190-198.	5.3	36
17	Minimization of municipal sewage sludge by means of a thermophilic membrane bioreactor with intermittent aeration. Journal of Cleaner Production, 2017, 143, 369-376.	4.6	36
18	Treatment of sewage sludge in a thermophilic membrane reactor (TMR) with alternate aeration cycles. Journal of Environmental Management, 2015, 162, 132-138.	3.8	35

#	Article	IF	CITATIONS
19	Disinfection in Wastewater Treatment Plants: Evaluation of Effectiveness and Acute Toxicity Effects. Sustainability, 2017, 9, 1704.	1.6	35
20	The reuse of biosolids on agricultural land: Critical issues and perspective. Water Environment Research, 2020, 92, 11-25.	1.3	30
21	A review on alternative binders, admixtures and water for the production of sustainable concrete. Journal of Cleaner Production, 2021, 295, 126408.	4.6	30
22	The Valorization of Ammonia in Manure Digestate by Means of Alternative Stripping Reactors. Sustainability, 2018, 10, 3073.	1.6	29
23	Disinfection of Wastewater by UV-Based Treatment for Reuse in a Circular Economy Perspective. Where Are We at?. International Journal of Environmental Research and Public Health, 2021, 18, 77.	1.2	29
24	Analysis of lockdown for CoViD-19 impact on NO2 in London, Milan and Paris: What lesson can be learnt?. Chemical Engineering Research and Design, 2021, 146, 952-960.	2.7	28
25	Why use a thermophilic aerobic membrane reactor for the treatment of industrial wastewater/liquid waste?. Environmental Technology (United Kingdom), 2015, 36, 2115-2124.	1.2	27
26	How can sludge dewatering devices be assessed? Development of a new DSS and its application to real case studies. Journal of Environmental Management, 2014, 137, 86-92.	3.8	26
27	Foams in Wastewater Treatment Plants: From Causes to Control Methods. Applied Sciences (Switzerland), 2020, 10, 2716.	1.3	25
28	Effectiveness in chlorite removal by two activated carbons under different working conditions: a laboratory study. Journal of Water Supply: Research and Technology - AQUA, 2015, 64, 450-461.	0.6	23
29	Horizontal Flow Constructed Wetland for Greywater Treatment and Reuse: An Experimental Case. International Journal of Environmental Research and Public Health, 2020, 17, 2317.	1.2	23
30	RECOVERY OF SEWAGE SLUDGE ON AGRICULTURAL LAND IN LOMBARDY: CURRENT ISSUES AND REGULATORY SCENARIOS. Environmental Engineering and Management Journal, 2015, 14, 1477-1486.	0.2	23
31	Methodological approach for the optimization of drinking water treatment plants' operation: a case study. Water Science and Technology, 2015, 71, 597-604.	1.2	22
32	High-strength wastewater treatment in a pure oxygen thermophilic process: 11-year operation and monitoring of different plant configurations. Water Science and Technology, 2015, 71, 588-596.	1.2	22
33	Integrating novel (thermophilic aerobic membrane reactor-TAMR) and conventional (conventional) Tj ETQq1 1 0.7 Bioresource Technology, 2018, 255, 213-219.	784314 rg 4.8	BT /Overloc 22
34	Integration between chemical oxidation and membrane thermophilic biological process. Water Science and Technology, 2010, 61, 227-234.	1.2	21
35	Treatment of high strength wastewater by thermophilic aerobic membrane reactor and possible valorisation of nutrients and organic carbon in its residues. Journal of Cleaner Production, 2021, 280, 124404.	4.6	21
36	Survey on full-scale drinking water treatment plants for arsenic removal in Italy. Water Practice and Technology, 2014, 9, 42-51.	1.0	20

#	Article	IF	Citations
37	Leaching behaviour of municipal solid waste incineration bottom ash: From granular material to monolithic concrete. Waste Management and Research, 2017, 35, 978-990.	2.2	19
38	Can particulate matter be identified as the primary cause of the rapid spread of CoViD-19 in some areas of Northern Italy?. Environmental Science and Pollution Research, 2021, 28, 33120-33132.	2.7	19
39	Treatment of high strength aqueous wastes in a thermophilic aerobic membrane reactor (TAMR): performance and resilience. Water Science and Technology, 2017, 76, 3236-3245.	1.2	18
40	Photoelectrocatalysis on TiO2 meshes: different applications in the integrated urban water management. Environmental Science and Pollution Research, 2021, 28, 59452-59461.	2.7	18
41	Microplastics in Sewage Sludge: A Known but Underrated Pathway in Wastewater Treatment Plants. Sustainability, 2021, 13, 12591.	1.6	18
42	Reducing the chlorine dioxide demand in final disinfection of drinking water treatment plants using activated carbon. Environmental Technology (United Kingdom), 2015, 36, 1499-1509.	1.2	17
43	How can drinking water treatments influence chlorine dioxide consumption and by-product formation in final disinfection?. Water Science and Technology: Water Supply, 2016, 16, 333-346.	1.0	17
44	Sustainability of Water Safety Plans Developed in Sub-Saharan Africa. Sustainability, 2015, 7, 11139-11159.	1.6	15
45	Strong minimization of biological sludge production and enhancement of phosphorus bioavailability with a thermophilic biological fluidized bed reactor. Chemical Engineering Research and Design, 2021, 155, 262-276.	2.7	15
46	Integrated RTD â^' CFD Hydrodynamic Analysis for Performance Assessment of Activated Sludge Reactors. Environmental Processes, 2018, 5, 23-42.	1.7	14
47	Adsorption of Fluorides in Drinking Water by Palm Residues. Sustainability, 2020, 12, 3786.	1.6	14
48	Identification and Localization of Hydrodynamic Anomalies in a Real Wastewater Treatment Plant by an Integrated Approach: RTD-CFD Analysis. Environmental Processes, 2020, 7, 563-578.	1.7	14
49	Experimental treatment of a refinery waste air stream, for BTEX removal, by water scrubbing and biotrickling on a bed ofMitilus edulisshells. Environmental Technology (United Kingdom), 2015, 36, 2300-2307.	1.2	13
50	Treatment of aqueous wastes by means of Thermophilic Aerobic Membrane Reactor (TAMR) and nanofiltration (NF): process auditing of a full-scale plant. Environmental Monitoring and Assessment, 2019, 191, 708.	1.3	13
51	Oxygen transfer improvement in MBBR process. Environmental Science and Pollution Research, 2019, 26, 10727-10737.	2.7	13
52	Oxygen control and improved denitrification efficiency by dosing ferrous ions in the anoxic reactor. Desalination and Water Treatment, 2016, 57, 18240-18247.	1.0	11
53	Performance of Full-Scale Thermophilic Membrane Bioreactor and Assessment of the Effect of the Aqueous Residue on Mesophilic Biological Activity. Water (Switzerland), 2021, 13, 1754.	1.2	11
54	Rice Industry By-Products as Adsorbent Materials for Removing Fluoride and Arsenic from Drinking Water—A Review. Applied Sciences (Switzerland), 2022, 12, 3166.	1.3	11

#	Article	IF	Citations
55	Wet Oxidation of Fine Soil Contaminated with Petroleum Hydrocarbons: A Way towards a Remediation Cycle. Environments - MDPI, 2018, 5, 69.	1.5	10
56	Is drinking water from â€~improved sources' really safe? A case study in the Logone valley (Chad-Cameroon). Journal of Water and Health, 2013, 11, 748-761.	1.1	9
57	Rheology and Microbiology of Sludge from a Thermophilic Aerobic Membrane Reactor. Journal of Chemistry, 2017, 2017, 1-19.	0.9	9
58	Efficiency and Energy Demand in Polishing Treatment of Wastewater Treatment Plants Effluents: Photoelectrocatalysis vs. Photocatalysis and Photolysis. Water (Switzerland), 2021, 13, 821.	1.2	9
59	Kinetics of Microcystin-LR Removal in a Real Lake Water by UV/H2O2 Treatment and Analysis of Specific Energy Consumption. Toxins, 2020, 12, 810.	1.5	9
60	How to Produce an Alternative Carbon Source for Denitrification by Treating and Drastically Reducing Biological Sewage Sludge. Membranes, 2021, 11, 977.	1.4	9
61	Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. International Journal of Environmental Research and Public Health, 2021, 18, 10326.	1.2	8
62	Review of rheological behaviour of sewage sludge and its importance in the management of wastewater treatment plants. Water Practice and Technology, 2022, 17, 483-491.	1.0	8
63	Evaluation of concrete production with solid residues obtained from fluidized-bed incineration of MSW-derived solid recovered fuel (SRF). Journal of Material Cycles and Waste Management, 2017, 19, 1374-1383.	1.6	7
64	The upgrading of conventional activated sludge processes with thermophilic aerobic membrane reactor: Alternative solutions for sludge reduction. Journal of Environmental Management, 2020, 264, 110490.	3.8	7
65	Synergy between anaerobic digestion and a postâ€treatment based on Thermophilic Aerobic Membrane Reactor (TAMR). Environmental Progress and Sustainable Energy, 2017, 36, 1802-1809.	1.3	6
66	Process auditing and performance improvement in a mixed wastewater–aqueous waste treatment plant. Water Science and Technology, 2018, 77, 891-898.	1.2	6
67	Troubleshooting in a full-scale wastewater treatment plant: what can be learnt from tracer tests. International Journal of Environmental Science and Technology, 2019, 16, 3455-3466.	1.8	6
68	Drastic reduction of sludge in wastewater treatment plants: co-digestion of sewage sludge and aqueous waste in a thermophilic membrane reactor. Environmental Technology (United Kingdom), 2020, 41, 2554-2563.	1.2	6
69	Extraction and Purification of Phosphorus from the Ashes of Incinerated Biological Sewage Sludge. Water (Switzerland), 2021, 13, 1102.	1.2	6
70	Water reuse as a secure pathway to deal with water scarcity. MATEC Web of Conferences, 2020, 305, 00090.	0.1	6
71	A Mini Review of Recent Findings in Cellulose-, Polymer- and Graphene-Based Membranes for Fluoride Removal from Drinking Water. Journal of Carbon Research, 2021, 7, 74.	1.4	6
72	Wastewater treatment by means of thermophilic aerobic membrane reactors: respirometric tests and numerical models for the determination of stoichiometric/kinetic parameters. Environmental Technology (United Kingdom), 2019, 40, 182-191.	1.2	5

#	Article	IF	CITATIONS
73	Evaluation of foaming potential for water treatment: limits and developments. Environmental Science and Pollution Research, 2020, 27, 27952-27960.	2.7	5
74	The performance evaluation of wastewater service: a protocol based on performance indicators applied to sewer systems and wastewater treatment plants. Environmental Technology (United) Tj ETQq0 0 0 rg	BT 1/Q verl	ock510 Tf 50 6
75	Drinking Water Quality Change from Catchment to Consumer in the Rural Community of Patar (Senegal). Water Quality, Exposure, and Health, 2013, 5, 75-83.	1.5	4
76	Research experiences on the reuse of industrial waste for concrete production. MATEC Web of Conferences, 2017, 121, 10001.	0.1	4
77	Enhancement of Methanogenic Activity in Volumetrically Undersized Reactor by Mesophilic Co-Digestion of Sewage Sludge and Aqueous Residue. Sustainability, 2021, 13, 7728.	1.6	4
78	Numerical Analysis of a Full-Scale Thermophilic Biological System and Investigation of Nitrate and Ammonia Fates. Applied Sciences (Switzerland), 2022, 12, 6952.	1.3	4
79	CONTROL MEASURES FOR Cyanobacteria AND Cyanotoxins IN DRINKING WATER. Environmental Engineering and Management Journal, 2018, 17, 2455-2463.	0.2	3
80	Understanding the Influence of Diverse Non-Volatile Media on Rheological Properties of Thermophilic Biological Sludge and Evaluation of Its Thixotropic Behaviour. Applied Sciences (Switzerland), 2022, 12, 5198.	1.3	3
81	Drinking water quality assessment and corrosion mitigation in the hospital water supply system of Chacas Village (Peru). Revista Ambiente & Ãgua, 2014, 9, .	0.1	2
82	Comparison between experimental results of different technologies for arsenic removal from water intended for human consumption. Water Practice and Technology, 2019, 14, 884-896.	1.0	1
83	An Innovative Technology to Minimize Biological Sludge Production and Improve Its Quality in a Circular Economy Perspective. Handbook of Environmental Chemistry, 2022, , 1.	0.2	O