Jianglei Fan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632720/publications.pdf

Version: 2024-02-01

840776 794594 22 358 11 19 h-index citations g-index papers 22 22 22 197 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Lamellae Orientation Control and Mechanical Properties of Directionally Solidified Binary Ti-49Al Alloy in Oxide Ceramics Crucible. International Journal of Metalcasting, 2022, 16, 622-633.	1.9	4
2	Effect of the Coke/Flake Graphite Ratio on the Microstructure and Properties of Cu-Based Powder Metallurgy Friction Materials. Journal of Materials Engineering and Performance, 2022, 31, 10378-10392.	2.5	6
3	Effect of lamellae orientation on tensile properties of directionally solidified Ti–46Al–0.5W–0.5Si alloy. Materials Science and Technology, 2021, 37, 772-784.	1.6	3
4	Effect of carbon-fibre powder on friction and wear properties of copper-matrix composites. Materials Science and Technology, 2020, 36, 92-99.	1.6	11
5	Effect of NiO addition on the high-temperature oxidation and corrosion behaviors of Fe–Ni alloy as inert anode material for aluminum electrolysis. Journal of Materials Science, 2020, 55, 4065-4072.	3.7	3
6	Effect of Ni Content on the Microstructure Formation and Properties of Sn-0.7Cu-xNi Solder Alloys. Journal of Materials Engineering and Performance, 2020, 29, 4934-4943.	2.5	6
7	Effect of Co content on the microstructure, spreadability, conductivity and corrosion resistance of Sn-0.7Cu alloy. Microelectronics Reliability, 2020, 107, 113615.	1.7	13
8	Microstructure Evolution, Thermal and Mechanical Property of Co Alloyed Sn-0.7Cu Lead-Free Solder. Journal of Electronic Materials, 2020, 49, 2660-2668.	2.2	8
9	Effect of Compaction Parameters on the Magnetic and Corrosive Properties of Soft Magnetic Composites with Parylene Insulation. Journal of Superconductivity and Novel Magnetism, 2019, 32, 4033-4041.	1.8	1
10	Recent research and development of mould materials for casting TiAl alloys. Materials Science and Technology, 2019, 35, 891-899.	1.6	8
11	Effect of Cr–Fe on friction and wear properties of Cu-based friction material. Materials Science and Technology, 2018, 34, 869-875.	1.6	18
12	Synthesis and Magnetic Properties of Soft Magnetic Composites Based on Silicone Resin-Coated Iron Powders. Journal of Superconductivity and Novel Magnetism, 2018, 31, 587-595.	1.8	17
13	Microstructure formation and interface characteristics of directionally solidified TiAl-Si alloys in alumina crucibles with a new Y2O3 skull-aided technology. Scientific Reports, 2017, 7, 45198.	3.3	6
14	Effects of solidification parameters on the growth direction of α phase in directionally solidified Ti-49Al alloy. Intermetallics, 2017, 90, 113-118.	3.9	11
15	Effect of solidification parameters on microstructural characteristics and mechanical properties of directionally solidified binary TiAl alloy. Journal of Alloys and Compounds, 2015, 650, 8-14.	5. 5	20
16	Lamellar orientation and growth direction of \hat{l}_{\pm} phase in directionally solidified Ti-46Al-0.5W-0.5Si alloy. Intermetallics, 2012, 27, 38-45.	3.9	25
17	Effect of growth rate on microstructure parameters and microhardness in directionally solidified Ti–49Al alloy. Materials & Design, 2012, 34, 552-558.	5.1	39
18	Microstructure evolution of directionally solidified Ti–46Al–0.5W–0.5Si alloy. Journal of Crystal Growth, 2011, 337, 52-59.	1.5	17

#	Article	IF	CITATIONS
19	Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti–49Al alloy. Materials Chemistry and Physics, 2011, 130, 1232-1238.	4.0	27
20	Directional solidification of Ti–49 at.%Al alloy. Applied Physics A: Materials Science and Processing, 2011, 105, 239-248.	2.3	16
21	Dependency of microhardness on solidification processing parameters and microstructure characteristics in the directionally solidified Ti–46Al–0.5W–0.5Si alloy. Journal of Alloys and Compounds, 2010, 504, 60-64.	5.5	49
22	The microstructure parameters and microhardness of directionally solidified Ti–43Al–3Si alloy. Journal of Alloys and Compounds, 2010, 506, 593-599.	5.5	50