
Sara Zenoni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632318/publications.pdf Version: 2024-02-01

SADA ZENONI

#	Article	IF	CITATIONS
1	The Grapevine Expression Atlas Reveals a Deep Transcriptome Shift Driving the Entire Plant into a Maturation Program Â. Plant Cell, 2012, 24, 3489-3505.	3.1	371
2	Characterization of Transcriptional Complexity during Berry Development in <i>Vitis vinifera</i> Using RNA-Seq. Plant Physiology, 2010, 152, 1787-1795.	2.3	330
3	Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. BMC Genomics, 2010, 11, 719.	1.2	307
4	Genome-wide analysis of the grapevine stilbene synthase multigenic family: genomic organization and expression profiles upon biotic and abiotic stresses. BMC Plant Biology, 2012, 12, 130.	1.6	275
5	The Phenylpropanoid Pathway Is Controlled at Different Branches by a Set of R2R3-MYB C2 Repressors in Grapevine. Plant Physiology, 2015, 167, 1448-1470.	2.3	272
6	Genome and transcriptome analysis of the grapevine (Vitis vinifera L.) WRKY gene family. Horticulture Research, 2014, 1, 14016.	2.9	188
7	The plasticity of the grapevine berry transcriptome. Genome Biology, 2013, 14, r54.	3.8	168
8	Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data Integration into Networks Â. Plant Physiology, 2010, 154, 1439-1459.	2.3	145
9	Downregulation of the Petunia hybrida α-Expansin Gene PhEXP1 Reduces the Amount of Crystalline Cellulose in Cell Walls and Leads to Phenotypic Changes in Petal Limbs. Plant Cell, 2004, 16, 295-308.	3.1	134
10	The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. Journal of Plant Research, 2016, 129, 513-526.	1.2	134
11	Selective defoliation affects plant growth, fruit transcriptional ripening program and flavonoid metabolism in grapevine. BMC Plant Biology, 2013, 13, 30.	1.6	131
12	Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation. Plant Physiology, 2017, 174, 2376-2396.	2.3	121
13	Genome-Wide Analysis of the Expansin Gene Superfamily Reveals Grapevine-Specific Structural and Functional Characteristics. PLoS ONE, 2013, 8, e62206.	1.1	113
14	A grapevine anthocyanin acyltransferase, transcriptionally regulated by VvMYBA, can produce most acylated anthocyanins present in grape skins. Plant Physiology, 2015, 169, pp.01255.2015.	2.3	113
15	De novo transcriptome characterization of Vitis vinifera cv. Corvina unveils varietal diversity. BMC Genomics, 2013, 14, 41.	1.2	110
16	Integrated Network Analysis Identifies Fight-Club Nodes as a Class of Hubs Encompassing Key Putative Switch Genes That Induce Major Transcriptome Reprogramming during Grapevine Development Â. Plant Cell, 2015, 26, 4617-4635.	3.1	110
17	A Grapevine TTG2-Like WRKY Transcription Factor Is Involved in Regulating Vacuolar Transport and Flavonoid Biosynthesis. Frontiers in Plant Science, 2016, 7, 1979.	1.7	110
18	Towards a scientific interpretation of the terroir concept: plasticity of the grape berry metabolome. BMC Plant Biology, 2015, 15, 191.	1.6	106

SARA ZENONI

#	Article	IF	CITATIONS
19	Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics, 2011, 12, 384.	1.2	105
20	Transcriptomic analysis of the late stages of grapevine (Vitis vinifera cv. Cabernet Sauvignon) berry ripening reveals significant induction of ethylene signaling and flavor pathways in the skin. BMC Plant Biology, 2014, 14, 370.	1.6	105
21	Whole Plant Temperature Manipulation Affects Flavonoid Metabolism and the Transcriptome of Grapevine Berries. Frontiers in Plant Science, 2017, 8, 929.	1.7	102
22	Timing and Order of the Molecular Events Marking the Onset of Berry Ripening in Grapevine. Plant Physiology, 2018, 178, 1187-1206.	2.3	84
23	Functional Diversification of Grapevine MYB5a and MYB5b in the Control of Flavonoid Biosynthesis in a Petunia Anthocyanin Regulatory Mutant. Plant and Cell Physiology, 2014, 55, 517-534.	1.5	83
24	Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening. Plant and Cell Physiology, 2016, 57, 1332-1349.	1.5	78
25	Disclosing the Molecular Basis of the Postharvest Life of Berry in Different Grapevine Genotypes. Plant Physiology, 2016, 172, 1821-1843.	2.3	75
26	Grapevine field experiments reveal the contribution of genotype, the influence of environment and the effect of their interaction (G×E) on the berry transcriptome. Plant Journal, 2018, 93, 1143-1159.	2.8	75
27	miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics, 2015, 16, 393.	1.2	73
28	Increasing the source/sink ratio in Vitis vinifera (cv Sangiovese) induces extensive transcriptome reprogramming and modifies berry ripening. BMC Genomics, 2011, 12, 631.	1.2	72
29	Plasticity of the Berry Ripening Program in a White Grape Variety. Frontiers in Plant Science, 2016, 7, 970.	1.7	68
30	Patterns of cell division and expansion in developing petals of Petunia hybrida. Sexual Plant Reproduction, 2002, 15, 123-132.	2.2	66
31	Overexpression of <i>PhEXPA1</i> increases cell size, modifies cell wall polymer composition and affects the timing of axillary meristem development in <i>Petunia hybrida</i> . New Phytologist, 2011, 191, 662-677.	3.5	58
32	The <scp>MYB</scp> 5â€driven <scp>MBW</scp> complex recruits a <scp>WRKY</scp> factor to enhance the expression of targets involved in vacuolar hyperâ€acidification and trafficking in grapevine. Plant Journal, 2019, 99, 1220-1241.	2.8	54
33	Skin pectin metabolism during the postharvest dehydration of berries from three distinct grapevine cultivars. Australian Journal of Grape and Wine Research, 2013, 19, 171-179.	1.0	53
34	Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars. BMC Genomics, 2016, 17, 815.	1.2	49
35	The Arabidopsis thaliana transcription factor MYB59 regulates calcium signalling during plant growth and stress response. Plant Molecular Biology, 2019, 99, 517-534.	2.0	47
36	Revealing impaired pathways in the <i>an11</i> mutant by highâ€throughput characterization of <i>Petunia axillaris</i> and <i>Petunia inflata</i> transcriptomes. Plant Journal, 2011, 68, 11-27.	2.8	35

SARA ZENONI

#	Article	IF	CITATIONS
37	Regeneration of plants from embryogenic callus-derived protoplasts of Garganega and Sangiovese grapevine (Vitis vinifera L.) cultivars. Plant Cell, Tissue and Organ Culture, 2019, 138, 239-246.	1.2	28
38	Selection of candidate genes controlling veraison time in grapevine through integration of meta-QTL and transcriptomic data. BMC Genomics, 2019, 20, 739.	1.2	24
39	Transcriptional Responses to Pre-flowering Leaf Defoliation in Grapevine Berry from Different Growing Sites, Years, and Genotypes. Frontiers in Plant Science, 2017, 8, 630.	1.7	23
40	Pistil Transcriptome Analysis to Disclose Genes and Gene Products Related to Aposporous Apomixis in Hypericum perforatum L Frontiers in Plant Science, 2017, 8, 79.	1.7	22
41	Specific molecular interactions between Vitis vinifera and Botrytis cinerea are required for noble rot development in grape berries. Postharvest Biology and Technology, 2019, 156, 110924.	2.9	22
42	Sporophytic and gametophytic functions of the cell cycle-associated Mob1 gene in Arabidopsis thaliana L. Gene, 2011, 484, 1-12.	1.0	21
43	Rapid dehydration of grape berries dampens the post-ripening transcriptomic program and the metabolite profile evolution. Horticulture Research, 2020, 7, 141.	2.9	21
44	A multivariate statistical analysis approach to highlight molecular processes in plant cell walls through ATR FT-IR microspectroscopy: The role of the α-expansin PhEXPA1 in Petunia hybrida. Vibrational Spectroscopy, 2013, 65, 36-43.	1.2	19
45	Genetic, epigenetic and genomic effects on variation of gene expression among grape varieties. Plant Journal, 2019, 99, 895-909.	2.8	19
46	The Grape Gene Reference Catalogue as a Standard Resource for Gene Selection and Genetic Improvement. Frontiers in Plant Science, 2021, 12, 803977.	1.7	19
47	Root physiological and transcriptional response to single and combined S and Fe deficiency in durum wheat. Environmental and Experimental Botany, 2017, 143, 172-184.	2.0	16
48	VviNAC33 promotes organ deâ€greening and represses vegetative growth during the vegetativeâ€ŧoâ€mature phase transition in grapevine. New Phytologist, 2021, 231, 726-746.	3.5	16
49	Active rearrangements in the cell wall follow polymer concentration during postharvest withering in the berry skin of Vitis vinifera cv. Corvina. Plant Physiology and Biochemistry, 2019, 135, 411-422.	2.8	15
50	The Signatures of Selection for Translational Accuracy in Plant Genes. Genome Biology and Evolution, 2013, 5, 1117-1126.	1.1	13
51	Stress responses and epigenomic instability mark the loss of somatic embryogenesis competence in grapevine. Plant Physiology, 2022, 188, 490-508.	2.3	12
52	Genomic Designing for Biotic Stress Resistant Grapevine. , 2022, , 87-255.		11
53	PhEXPA1, aPetunia hybridaexpansin, is involved in cell wall metabolism and in plant architecture specification. Plant Signaling and Behavior, 2011, 6, 2031-2034.	1.2	10
54	The Terroir Concept Interpreted through Grape Berry Metabolomics and Transcriptomics. Journal of Visualized Experiments, 2016, , .	0.2	9

SARA ZENONI

#	Article	IF	CITATIONS
55	Pomegranate (<i>Punica granatum</i> L.) Expresses Several nsLTP Isoforms Characterized by Different Immunoglobulin E-Binding Properties. International Archives of Allergy and Immunology, 2014, 164, 112-121.	0.9	8
56	A Major QTL is associated with berry grape texture characteristics. Oeno One, 2021, 55, 183-206.	0.7	8
57	Genetic dissection of grape berry ripening control: defining a role for NAC transcription factors. Acta Horticulturae, 2019, , 387-402.	0.1	5
58	Plant and fungus transcriptomic data from grapevine berries undergoing artificially-induced noble rot caused by Botrytis cinerea. Data in Brief, 2019, 25, 104150.	0.5	3
59	Grape Berry Transcriptome. , 2021, , 558-571.		3
60	The Role of Expansins A in Petunia Development. , 2009, , 247-267.		1
61	DIFFERENTIAL EXPRESSION OF GENES IN BERRIES OF CV. 'SANGIOVESE' (VITIS VINIFERA L.) DURING RIPENING FOLLOWING CLUSTER THINNING AT VÉRAISON. Acta Horticulturae, 2014, , 441-448.	0.1	1
62	Changes in flavonoid biosynthesis and in the berry whole transcriptome of â€~Sangiovese' under moderate air temperature increase. Acta Horticulturae, 2017, , 157-164.	0.1	1
63	Phenolic contents and genome-wide expression profiling of grapevine berries (Vitis vinifera L.) Tj ETQq1 1 0.7843	14 rgBT /(0.1	Overlock 10
64	Towards the definition of a detailed transcriptomic map of berry development. BIO Web of Conferences, 2019, 13, 01001.	0.1	1
65	Unraveling the key molecular events of grape berry ripening. Acta Horticulturae, 2019, , 241-248.	0.1	1
66	Grape Transcriptomics and Viticulture. Compendium of Plant Genomes, 2019, , 275-299.	0.3	0