Aalbert Jan Hendriks

List of Publications by Citations

Source: https://exaly.com/author-pdf/2632116/aalbert-jan-hendriks-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

128 61 4,123 33 h-index g-index citations papers 128 4,678 6.7 5.53 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
128	A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. <i>Critical Reviews in Toxicology</i> , 2001 , 31, 247-84	5.7	387
127	Is cumulative fossil energy demand a useful indicator for the environmental performance of products?. <i>Environmental Science & Environmental &</i>	10.3	300
126	Cumulative energy demand as predictor for the environmental burden of commodity production. <i>Environmental Science & Environmental Science & Environme</i>	10.3	268
125	Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 481-92	3.8	246
124	The toxicity of plastic nanoparticles to green algae as influenced by surface modification, medium hardness and cellular adsorption. <i>Aquatic Toxicology</i> , 2017 , 183, 11-20	5.1	176
123	Temperature-dependent effects of cadmium on Daphnia magna: accumulation versus sensitivity. <i>Environmental Science & Environmental Science & Environme</i>	10.3	162
122	Ecological footprint accounting in the life cycle assessment of products. <i>Ecological Economics</i> , 2008 , 64, 798-807	5.6	150
121	Multimedia modeling of engineered nanoparticles with SimpleBox4nano: model definition and evaluation. <i>Environmental Science & Environmental Science &</i>	10.3	146
120	Natural colloids are the dominant factor in the sedimentation of nanoparticles. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1019-22	3.8	124
119	Urban drainage systems: An undervalued habitat for aquatic macroinvertebrates. <i>Biological Conservation</i> , 2009 , 142, 1105-1115	6.2	78
118	Review of the partitioning of chemicals into different plastics: Consequences for the risk assessment of marine plastic debris. <i>Marine Pollution Bulletin</i> , 2016 , 113, 17-24	6.7	76
117	Critical body residues linked to octanol-water partitioning, organism composition, and LC50 QSARs: meta-analysis and model. <i>Environmental Science & Environmental Science & E</i>	10.3	66
116	Metal bioaccumulation in aquatic species: quantification of uptake and elimination rate constants using physicochemical properties of metals and physiological characteristics of species. <i>Environmental Science & Description (Science & Description (Scie</i>	10.3	62
115	Scaling of offspring number and mass to plant and animal size: model and meta-analysis. <i>Oecologia</i> , 2008 , 155, 705-16	2.9	62
114	Environmental contamination due to shale gas development. <i>Science of the Total Environment</i> , 2016 , 550, 431-438	10.2	59
113	The power of size: A meta-analysis reveals consistency of allometric regressions. <i>Ecological Modelling</i> , 2007 , 205, 196-208	3	56
112	Ecotoxicogenomics: bridging the gap between genes and populations. <i>Environmental Science & Ecotoxicogy</i> , 2010 , 44, 4328-33	10.3	51

111	Sensitivity of polar and temperate marine organisms to oil components. <i>Environmental Science & Environmental </i>	10.3	50	
110	Responses in sediment bioassays used in the Netherlands: can observed toxicity be explained by routinely monitored priority pollutants?. <i>Water Research</i> , 2003 , 37, 1691-710	12.5	50	
109	Power-law relationships for estimating mass, fuel consumption and costs of energy conversion equipments. <i>Environmental Science & Environmental Scienc</i>	10.3	43	
108	Development and application of the SSD approach in scientific case studies for ecological risk assessment. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 2149-61	3.8	42	
107	Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 355-9	3.8	42	
106	Metal accumulation in the earthworm Lumbricus rubellus. Model predictions compared to field data. <i>Environmental Pollution</i> , 2007 , 146, 428-36	9.3	39	
105	Species richnessphorus relationships for lakes and streams worldwide. <i>Global Ecology and Biogeography</i> , 2013 , 22, 1304-1314	6.1	36	
104	Application of the tissue residue approach in ecological risk assessment. <i>Integrated Environmental Assessment and Management</i> , 2011 , 7, 116-40	2.5	36	
103	Modeling toxicity of binary metal mixtures ($Cu(2+)$ - $Ag(+)$, $Cu(2+)$ - $Zn(2+)$) to lettuce, Lactuca sativa, with the biotic ligand model. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 137-43	3.8	35	
102	Stakeholder Value Orientations in Water Management. <i>Society and Natural Resources</i> , 2010 , 23, 805-82	212.4	35	
101	Meta-analysis of intrinsic rates of increase and carrying capacity of populations affected by toxic and other stressors. <i>Environmental Toxicology and Chemistry</i> , 2005 , 24, 2267-77	3.8	35	
100	Use of semi-permeable membrane devices and solid-phase extraction for the wide-range screening of microcontaminants in surface water by GC-AED/MS. <i>Water Research</i> , 2002 , 36, 4455-70	12.5	35	
99	Including sorption to black carbon in modeling bioaccumulation of polycyclic aromatic hydrocarbons: uncertainty analysis and comparison to field data. <i>Environmental Science & Environmental Science & Technology</i> , 2007 , 41, 2738-44	10.3	34	
98	The variation in slope of concentration-effect relationships. <i>Ecotoxicology and Environmental Safety</i> , 2001 , 48, 43-50	7	34	
97	Calcifying species sensitivity distributions for ocean acidification. <i>Environmental Science & Environmental &</i>	10.3	33	
96	Aboveground herbivory shapes the biomass distribution and flux of soil invertebrates. <i>PLoS ONE</i> , 2008 , 3, e3573	3.7	33	
95	Effects of desiccation on native and non-native molluscs in rivers. Freshwater Biology, 2014, 59, 41-55	3.1	29	
94	Ranking ecological risks of multiple chemical stressors on amphibians. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 1416-21	3.8	29	

93	Integration of biotic ligand models (BLM) and bioaccumulation kinetics into a mechanistic framework for metal uptake in aquatic organisms. <i>Environmental Science & amp; Technology</i> , 2010 , 44, 5022-8	10.3	29
92	Organotin accumulation in an estuarine food chain: comparing field measurements with model estimations. <i>Marine Environmental Research</i> , 2006 , 61, 511-30	3.3	29
91	Oxygen limitation may affect the temperature and size dependence of metabolism in aquatic ectotherms. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 31963-31968	11.5	29
90	How to deal with 100,000+ substances, sites, and species: overarching principles in environmental risk assessment. <i>Environmental Science & Environmental & En</i>	10.3	28
89	Alternative Stable States Driven by Density-Dependent Toxicity. <i>Ecosystems</i> , 2010 , 13, 841-850	3.9	28
88	Eco-SpaCE: an object-oriented, spatially explicit model to assess the risk of multiple environmental stressors on terrestrial vertebrate populations. <i>Science of the Total Environment</i> , 2010 , 408, 3908-17	10.2	28
87	Environmental exposure assessment of engineered nanoparticles: why REACH needs adjustment. <i>Integrated Environmental Assessment and Management</i> , 2013 , 9, e15-26	2.5	27
86	How allometric scaling relates to soil abiotics. <i>Oikos</i> , 2011 , 120, 529-536	4	27
85	Modeling decreased food chain accumulation of PAHs due to strong sorption to carbonaceous materials and metabolic transformation. <i>Environmental Science & Environmental Scien</i>	10.3	27
84	Surviving in Changing Seascapes: Sediment Dynamics as Bottleneck for Long-Term Seagrass Presence. <i>Ecosystems</i> , 2016 , 19, 296-310	3.9	26
83	Comparing the ecological footprint with the biodiversity footprint of products. <i>Journal of Cleaner Production</i> , 2012 , 37, 107-114	10.3	25
82	A QICAR approach for quantifying binding constants for metal-ligand complexes. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 1036-42	7	24
81	Half-saturation constants in functional responses. <i>Global Ecology and Conservation</i> , 2014 , 2, 161-169	2.8	23
80	Towards a coherent allometric framework for individual home ranges, key population patches and geographic ranges. <i>Ecography</i> , 2009 , 32, 929-942	6.5	22
79	Characterisation factors for greenhouse gases at a midpoint level including indirect effects based on calculations with the IMAGE model. <i>International Journal of Life Cycle Assessment</i> , 2008 , 13, 191-201	4.6	19
78	Toxicokinetic toxicodynamic (TKTD) modeling of Ag toxicity in freshwater organisms: whole-body sodium loss predicts acute mortality across aquatic species. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 14481-9	10.3	18
77	Parameter uncertainty in modeling bioaccumulation factors of fish. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 403-12	3.8	17
76	Cadmium bioaccumulation factors for terrestrial species: application of the mechanistic bioaccumulation model OMEGA to explain field data. <i>Science of the Total Environment</i> , 2008 , 406, 413-8	10.2	17

(2009-2014)

75	Size relationships of water discharge in rivers: scaling of discharge with catchment area, main-stem length and precipitation. <i>Hydrological Processes</i> , 2014 , 28, 5769-5775	3.3	16	
74	Estimating bioconcentration factors, lethal concentrations and critical body residues of metals in the mollusks Perna viridis and Mytilus edulis using ion characteristics. <i>Environmental Toxicology and Chemistry</i> , 2008 , 27, 272-6	3.8	16	
73	A new twist on an old regression: transfer of chemicals to beef and milk in human and ecological risk assessment. <i>Chemosphere</i> , 2007 , 70, 46-56	8.4	16	
72	Quantitative structure-activity relationships for primary aerobic biodegradation of organic chemicals in pristine surface waters: starting points for predicting biodegradation under acclimatization. <i>Environmental Sciences: Processes and Impacts</i> , 2018 , 20, 157-170	4.3	16	
71	Modeling metal bioaccumulation in the invasive mussels Dreissena polymorpha and Dreissena rostriformis bugensis in the rivers Rhine and Meuse. <i>Environmental Toxicology and Chemistry</i> , 2011 , 30, 2825-30	3.8	15	
7°	Bioaccumulation potential of air contaminants: combining biological allometry, chemical equilibrium and mass-balances to predict accumulation of air pollutants in various mammals. <i>Toxicology and Applied Pharmacology</i> , 2009 , 238, 47-55	4.6	15	
69	A dominance shift from the zebra mussel to the invasive quagga mussel may alter the trophic transfer of metals. <i>Environmental Pollution</i> , 2015 , 203, 183-190	9.3	14	
68	A semi-empirical model for transport of inorganic nanoparticles across a lipid bilayer: implications for uptake by living cells. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 488-96	3.8	14	
67	The utilisation of structural descriptors to predict metabolic constants of xenobiotics in mammals. <i>Environmental Toxicology and Pharmacology</i> , 2015 , 39, 247-58	5.8	14	
66	Sensitivity of species to chemicals: dose-response characteristics for various test types (LC(50), LR(50) and LD(50)) and modes of action. <i>Ecotoxicology and Environmental Safety</i> , 2013 , 97, 10-6	7	14	
65	Modelling bioaccumulation of oil constituents in aquatic species. <i>Marine Pollution Bulletin</i> , 2013 , 76, 17	8 185 6	14	
64	Predicting the oral uptake efficiency of chemicals in mammals: combining the hydrophilic and lipophilic range. <i>Toxicology and Applied Pharmacology</i> , 2013 , 266, 150-6	4.6	14	
63	Disentanglement of the chemical, physical, and biological processes aids the development of quantitative structure-biodegradation relationships for aerobic wastewater treatment. <i>Science of the Total Environment</i> , 2020 , 708, 133863	10.2	14	
62	Developing and testing a global-scale regression model to quantify mean annual streamflow. <i>Journal of Hydrology</i> , 2017 , 544, 479-487	6	13	
61	Using datasets of different taxonomic detail to assess the influence of floodplain characteristics on terrestrial arthropod assemblages. <i>Biodiversity and Conservation</i> , 2010 , 19, 2087-2110	3.4	13	
60	Modelling interactions of toxicants and density dependence in wildlife populations. <i>Journal of Applied Ecology</i> , 2013 , 50, 1469-1478	5.8	12	
59	The distribution of a threatened migratory bird species in a patchy landscape: a multi-scale analysis. <i>Landscape Ecology</i> , 2011 , 26, 397-410	4.3	12	
58	Effects of a drought period on physico-chemical surface water quality in a regional catchment area. Journal of Environmental Monitoring, 2009 , 11, 1298-302		12	

57	Confronting variability with uncertainty in the ecotoxicological impact assessment of down-the-drain products. <i>Environment International</i> , 2019 , 126, 37-45	12.9	11
56	QSARs for estimating intrinsic hepatic clearance of organic chemicals in humans. <i>Environmental Toxicology and Pharmacology</i> , 2016 , 42, 190-7	5.8	11
55	Size relationships of water inflow into lakes: Empirical regressions suggest geometric scaling. Journal of Hydrology, 2012 , 414-415, 482-490	6	11
54	Modelling the impact of toxic and disturbance stress on white-tailed eagle (Haliaeetus albicilla) populations. <i>Ecotoxicology</i> , 2012 , 21, 27-36	2.9	11
53	Modeled and monitored variation in space and time of PCB-153 concentrations in air, sediment, soil and aquatic biota on a European scale. <i>Science of the Total Environment</i> , 2010 , 408, 3831-9	10.2	11
52	Evaluation of models capacity to predict size spectra parameters in ecosystems under stress. <i>Ecological Indicators</i> , 2017 , 79, 114-121	5.8	10
51	Delayed logistic and RosenzweigMacArthur models with allometric parameter setting estimate population cycles at lower trophic levels well. <i>Ecological Complexity</i> , 2012 , 9, 43-54	2.6	10
50	Modeling toxic stress by atrazine in a marine consumer-resource system. <i>Environmental Toxicology and Chemistry</i> , 2013 , 32, 1088-95	3.8	10
49	Evaluating the contribution of ingested oil droplets to the bioaccumulation of oil componentsa modeling approach. <i>Science of the Total Environment</i> , 2014 , 499, 99-106	10.2	9
48	Including ecotoxic impacts on warm-blooded predators in life cycle impact assessment. <i>Integrated Environmental Assessment and Management</i> , 2012 , 8, 372-8	2.5	9
47	Development of a PBPK Model for Silver Accumulation in Chub Infected with Acanthocephalan Parasites. <i>Environmental Science & Environmental Science & </i>	10.3	9
46	Chemical fate of persistent organic pollutants in the arctic: Evaluation of simplebox. <i>Science of the Total Environment</i> , 2020 , 720, 137579	10.2	8
45	Modeling the impacts of multiple environmental stress factors on estuarine copepod populations. <i>Environmental Science & Environmental Science & Envir</i>	10.3	8
44	Uncertainties associated with lacking data for predictions of solid-solution partitioning of metals in soil. <i>Science of the Total Environment</i> , 2014 , 490, 44-9	10.2	8
43	Delineating ion-ion interactions by electrostatic modeling for predicting rhizotoxicity of metal mixtures to lettuce Lactuca sativa. <i>Environmental Toxicology and Chemistry</i> , 2014 , 33, 1988-95	3.8	8
42	Multimetal accumulation in crustaceans in surface water related to body size and water chemistry. <i>Environmental Toxicology and Chemistry</i> , 2012 , 31, 2269-80	3.8	8
41	The impact of an additional ecotoxicity test on ecological quality standards. <i>Ecotoxicology and Environmental Safety</i> , 2009 , 72, 2037-45	7	8
40	Comparison of three fish bioaccumulation models for ecological and human risk assessment and validation with field data. <i>SAR and QSAR in Environmental Research</i> , 2005 , 16, 483-93	3.5	8

(2021-2016)

39	Development and Validation of a Biodynamic Model for Mechanistically Predicting Metal Accumulation in Fish-Parasite Systems. <i>PLoS ONE</i> , 2016 , 11, e0161091	3.7	8
38	Mechanistically-based QSARs to describe metabolic constants in mammals. <i>ATLA Alternatives To Laboratory Animals</i> , 2014 , 42, 59-69	2.1	7
37	Compound lipophilicity as a descriptor to predict binding affinity (1/K(m)) in mammals. <i>Environmental Science & Environmental Science & Environmental</i>	10.3	7
36	Dietary Toxicity Thresholds and Ecological Risks for Birds and Mammals Based on Species Sensitivity Distributions. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	7
35	Diagnosis of Basal Cell Carcinoma by Reflectance Confocal Microscopy: Study Design and Protocol of a Randomized Controlled Multicenter Trial. <i>JMIR Research Protocols</i> , 2016 , 5, e114	2	6
34	Crude oil affecting the biomass of the marine copepod Calanus finmarchicus: Comparing a simple and complex population model. <i>Marine Environmental Research</i> , 2016 , 119, 197-206	3.3	6
33	Modelling copper toxicokinetics in the zebra mussel, Dreissena polymorpha, under chronic exposures at various pH and sodium concentrations. <i>Chemosphere</i> , 2021 , 267, 129278	8.4	6
32	Reliable and representative in silico predictions of freshwater ecotoxicological hazardous concentrations. <i>Environment International</i> , 2020 , 134, 105334	12.9	5
31	Modelling chronic toxicokinetics and toxicodynamics of copper in mussels considering ionoregulatory homeostasis and oxidative stress. <i>Environmental Pollution</i> , 2021 , 287, 117645	9.3	5
30	Time-varying effects of aromatic oil constituents on the survival of aquatic species: Deviations between model estimates and observations. <i>Environmental Toxicology and Chemistry</i> , 2017 , 36, 128-136	5 ^{3.8}	4
29	Deriving Field-Based Ecological Risks for Bird Species. <i>Environmental Science & Environmental Science</i>	10.3	4
28	Sensitivity of native and alien freshwater bivalve species in Europe to climate-related environmental factors. <i>Ecosphere</i> , 2018 , 9, e02184	3.1	4
27	Statistical uncertainty in hazardous terrestrial concentrations estimated with aquatic ecotoxicity data. <i>Chemosphere</i> , 2013 , 93, 366-72	8.4	4
26	Mechanistic simulation of bioconcentration kinetics of waterborne Cd, Ag, Pd, and Pt in the zebra mussel Dreissena polymorpha. <i>Chemosphere</i> , 2020 , 242, 124967	8.4	4
25	Implications of Trophic Variability for Modeling Biomagnification of POPs in Marine Food Webs in the Svalbard Archipelago. <i>Environmental Science & Environmental Science & En</i>	10.3	3
24	Experimental and theoretical studies in the EU FP7 Marie Curie Initial Training Network Project, Environmental ChemOinformatics (ECO). <i>ATLA Alternatives To Laboratory Animals</i> , 2014 , 42, 7-11	2.1	3
23	Mean Species Abundance as a Measure of Ecotoxicological Risk. <i>Environmental Toxicology and Chemistry</i> , 2020 , 39, 2304-2313	3.8	3
22	Do initial concentration and activated sludge seasonality affect pharmaceutical biotransformation rate constants?. <i>Applied Microbiology and Biotechnology</i> , 2021 , 105, 6515-6527	5.7	3

21	Relating plant height to demographic rates and extinction vulnerability. <i>Biological Conservation</i> , 2018 , 220, 104-111	6.2	2
20	Including carrier-mediated transport in oral uptake prediction of nutrients and pharmaceuticals in humans. <i>Environmental Toxicology and Pharmacology</i> , 2014 , 38, 938-47	5.8	2
19	Relationships between absorption efficiency of elements in mammals and chemical properties. <i>Critical Reviews in Toxicology</i> , 2013 , 43, 800-9	5.7	2
18	Response to Comment on E cotoxicogenomics: Bridging the Gap between Genes and Populations <i>Environmental Science & Environmental Science & Environmen</i>	10.3	2
17	Thermochemical unification of molecular descriptors to predict radical hydrogen abstraction with low computational cost. <i>Physical Chemistry Chemical Physics</i> , 2020 , 22, 23215-23225	3.6	2
16	Dropping the microbead: Source and sink related microplastic distribution in the Black Sea and Caspian Sea basins. <i>Marine Pollution Bulletin</i> , 2021 , 173, 112982	6.7	2
15	Variability in nitrogen-derived trophic levels of Arctic marine biota. <i>Polar Biology</i> , 2021 , 44, 119-131	2	2
14	Bioconcentration of Organotin Cations during Molting Inhibits Growth. <i>Environmental Science & Environmental Science</i>	10.3	2
13	Towards an ecosystem service-based method to quantify the filtration services of mussels under chemical exposure. <i>Science of the Total Environment</i> , 2021 , 763, 144196	10.2	2
12	Internal and Maternal Distribution of Persistent Organic Pollutants in Sea Turtle Tissues: A Meta-Analysis. <i>Environmental Science & Environmental Sci</i>	10.3	2
11	Simulating changes in polar bear subpopulation growth rate due to legacy persistent organic pollutants - Temporal and spatial trends. <i>Science of the Total Environment</i> , 2021 , 754, 142380	10.2	2
10	The importance of over-the-counter-sales and product format in the environmental exposure assessment of active pharmaceutical ingredients. <i>Science of the Total Environment</i> , 2021 , 752, 141624	10.2	2
9	Ibuprofen exposure in Europe; ePiE as an alternative to costly environmental monitoring <i>Environmental Research</i> , 2022 , 209, 112777	7.9	1
8	Development of a toxicokinetic-toxicodynamic model simulating chronic copper toxicity to the Zebra mussel based on subcellular fractionation. <i>Aquatic Toxicology</i> , 2021 , 241, 106015	5.1	1
7	Dreissenids Dreaking loose: differential attachment as a possible driver of the dominance shift between two invasive mussel species. <i>Biological Invasions</i> , 2021 , 23, 2125-2141	2.7	1
6	Rewilding the Sea with Domesticated Seagrass. <i>BioScience</i> , 2021 , 71, 1171-1178	5.7	1
5	Delineation of the exposure-response causality chain of chronic copper toxicity to the zebra mussel, Dreissena polymorpha, with a TK-TD model based on concepts of biotic ligand model and subcellular metal partitioning model. <i>Chemosphere</i> , 2022 , 286, 131930	8.4	1
4	A Generalized Physiologically Based Kinetic Model for Fish for Environmental Risk Assessment of Pharmaceuticals <i>Environmental Science & Environmental Science & Environment</i>	10.3	1

LIST OF PUBLICATIONS

3	A generic model based on the properties of nanoparticles and cells for predicting cellular uptake. <i>Colloids and Surfaces B: Biointerfaces</i> , 2022 , 209, 112155	6	О
2	In response to An allometric tragedy of the commons: Response to the article Evaluation of models capacity to predict size spectra parameters in ecosystems under stress (Ecological Indicators, 2019, 96, 747-749)	5.8	
1	Stoichiometric ratios for biotics and xenobiotics capture effective metabolic coupling to re(de)fine biodegradation <i>Water Research</i> , 2022 , 217, 118333	12.5	