William A Banks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632086/publications.pdf

Version: 2024-02-01

550 44,022 1 papers citations h-1

105 181 h-index g-index

569 569 all docs citations

569 times ranked 39063 citing authors

#	Article	lF	Citations
1	Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology, 1998, 37, 1553-1561.	2.0	1,150
2	Leptin enters the brain by a saturable system independent of insulin. Peptides, 1996, 17, 305-311.	1.2	1,131
3	From blood–brain barrier to blood–brain interface: new opportunities for CNS drug delivery. Nature Reviews Drug Discovery, 2016, 15, 275-292.	21.5	778
4	Ghrelin controls hippocampal spine synapse density and memory performance. Nature Neuroscience, 2006, 9, 381-388.	7.1	738
5	Glucagon-like peptide-1 receptor is involved in learning and neuroprotection. Nature Medicine, 2003, 9, 1173-1179.	15.2	722
6	Passage of Cytokines across the Blood-Brain Barrier. NeuroImmunoModulation, 1995, 2, 241-248.	0.9	661
7	Extent and Direction of Ghrelin Transport Across the Blood-Brain Barrier Is Determined by Its Unique Primary Structure. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 822-827.	1.3	592
8	Murine tumor necrosis factor alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 1993, 47, 169-176.	1.1	525
9	Characteristics of compounds that cross the blood-brain barrier. BMC Neurology, 2009, 9, S3.	0.8	520
10	Plasma exosomal α-synuclein is likely CNS-derived and increased in Parkinson's disease. Acta Neuropathologica, 2014, 128, 639-650.	3.9	504
11	Brain-immune communication pathways. Brain, Behavior, and Immunity, 2007, 21, 727-735.	2.0	487
12	Blood-Brain Barrier Transport of Cytokines: A Mechanism for Neuropathology. Current Pharmaceutical Design, 2005, 11, 973-984.	0.9	460
13	Blood–Brain Barrier Dysfunction as a Cause and Consequence of Alzheimer's Disease. Journal of Cerebral Blood Flow and Metabolism, 2013, 33, 1500-1513.	2.4	443
14	Insulin in the brain: There and back again. , 2012, 136, 82-93.		442
15	Triglycerides Induce Leptin Resistance at the Blood-Brain Barrier. Diabetes, 2004, 53, 1253-1260.	0.3	432
16	Strategies to advance translational research into brain barriers. Lancet Neurology, The, 2008, 7, 84-96.	4.9	432
17	The blood–brain barrier and immune function and dysfunction. Neurobiology of Disease, 2010, 37, 26-32.	2.1	416
18	The antioxidants \hat{l} ±-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. Journal of Neurochemistry, 2003, 84, 1173-1183.	2.1	415

#	Article	IF	Citations
19	The source of cerebral insulin. European Journal of Pharmacology, 2004, 490, 5-12.	1.7	413
20	Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain. Biomaterials, 2017, 142, 1-12.	5.7	411
21	Penetration of interleukin-6 across the murine blood-brain barrier. Neuroscience Letters, 1994, 179, 53-56.	1.0	409
22	Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. Journal of Neuroinflammation, 2015, 12, 223.	3.1	405
23	Animal-Assisted Therapy and Loneliness in Nursing Homes: Use of Robotic versus Living Dogs. Journal of the American Medical Directors Association, 2008, 9, 173-177.	1.2	398
24	Clinical depression and inflammatory risk markers for coronary heart disease. American Journal of Cardiology, 2002, 90, 1279-1283.	0.7	391
25	Bidirectional transport of interleukin-1 alpha across the blood-brain barrier. Brain Research Bulletin, 1989, 23, 433-437.	1.4	345
26	Obesity and Hypertriglyceridemia Produce Cognitive Impairment. Endocrinology, 2008, 149, 2628-2636.	1.4	332
27	Impaired transport of leptin across the blood-brain barrier in obesityâ [*] †. Peptides, 1999, 20, 1341-1345.	1.2	304
28	Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain, Behavior, and Immunity, 2015, 45, 1-12.	2.0	297
29	The S1 protein of SARS-CoV-2 crosses the blood–brain barrier in mice. Nature Neuroscience, 2021, 24, 368-378.	7.1	295
30	Peptides and the blood-brain barrier: Lipophilicity as a predictor of permeability. Brain Research Bulletin, 1985, 15, 287-292.	1.4	283
31	Differential Permeability of the Blood–Brain Barrier to Two Pancreatic Peptides: Insulin and Amylin. Peptides, 1998, 19, 883-889.	1.2	283
32	Transport of Insulin Across the Blood-Brain Barrier: Saturability at Euglycemic Doses of Insulin. Peptides, 1997, 18, 1423-1429.	1,2	281
33	Minimal penetration of lipopolysaccharide across the murine blood–brain barrier. Brain, Behavior, and Immunity, 2010, 24, 102-109.	2.0	277
34	Effects of leptin on memory processing. Peptides, 2006, 27, 1420-1425.	1.2	276
35	Neuroimmune Axes of the Blood–Brain Barriers and Blood–Brain Interfaces: Bases for Physiological Regulation, Disease States, and Pharmacological Interventions. Pharmacological Reviews, 2018, 70, 278-314.	7.1	242
36	The Effects of Animal-Assisted Therapy on Loneliness in an Elderly Population in Long-Term Care Facilities. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2002, 57, M428-M432.	1.7	237

#	Article	IF	Citations
37	Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. International Journal of Molecular Sciences, 2020, 21, 4407.	1.8	236
38	Release of cytokines by brain endothelial cells: A polarized response to lipopolysaccharide. Brain, Behavior, and Immunity, 2006, 20, 449-455.	2.0	232
39	Characterizaton of Short Isoforms of the Leptin Receptor in Rat Cerebral Microvessels and of Brain Uptake of Leptin in Mouse Models of Obesity. Endocrinology, 2002, 143, 775-783.	1.4	226
40	Obesity-prone rats have normal blood-brain barrier transport but defective central leptin signaling before obesity onset. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2004, 286, R143-R150.	0.9	226
41	Cytokine and chemokine responses in serum and brain after single and repeated injections of lipopolysaccharide: Multiplex quantification with path analysis. Brain, Behavior, and Immunity, 2011, 25, 1637-1648.	2.0	226
42	Pathways linking depression, adiposity, and inflammatory markers in healthy young adults. Brain, Behavior, and Immunity, 2003, 17, 276-285.	2.0	225
43	Reduction of amyloid load and cerebral damage in transgenic mouse model of Alzheimer's disease by treatment with a $\hat{l}^2 \hat{a} \in s$ heet breaker peptide. FASEB Journal, 2002, 16, 860-862.	0.2	224
44	Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Research, 1996, 736, 280-286.	1.1	219
45	Lipopolysaccharide alters the blood–brain barrier transport of amyloid β protein: A mechanism for inflammation in the progression of Alzheimer's disease. Brain, Behavior, and Immunity, 2009, 23, 507-517.	2.0	218
46	Permeability of the blood–brain and blood–spinal cord barriers to interferons. Journal of Neuroimmunology, 1997, 76, 105-111.	1.1	211
47	Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Research, 2001, 896, 36-42.	1.1	205
48	Entry of Blood-Borne Cytokines into the Central Nervous System: Effects on Cognitive Processes. NeuroImmunoModulation, 2002, 10, 319-327.	0.9	201
49	The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain, Behavior, and Immunity, 2015, 44, 1-8.	2.0	201
50	Selective, Physiological Transport of Insulin Across the Blood-Brain Barrier: Novel Demonstration by Species-Specific Radioimmunoassays. Peptides, 1997, 18, 1257-1262.	1.2	195
51	Passage of amyloid β protein antibody across the blood–brain barrier in a mouse model of Alzheimer's disease. Peptides, 2002, 23, 2223-2226.	1.2	192
52	Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides, 2000, 21, 1769-1775.	1.2	190
53	Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E10-E15.	1.8	188
54	Transmission of α-synuclein-containing erythrocyte-derived extracellular vesicles across the blood-brain barrier via adsorptive mediated transcytosis: another mechanism for initiation and progression of Parkinson's disease?. Acta Neuropathologica Communications, 2017, 5, 71.	2.4	188

#	Article	IF	CITATIONS
55	Neuroinflammation: A Common Pathway in CNS Diseases as Mediated at the Blood-Brain Barrier. NeuroImmunoModulation, 2012, 19, 121-130.	0.9	187
56	Brain microvascular pericytes are immunoactive in culture: cytokine, chemokine, nitric oxide, and LRP-1 expression in response to lipopolysaccharide. Journal of Neuroinflammation, 2011, 8, 139.	3.1	178
57	Pharmacological Profiles of Peptide Drug Candidates for the Treatment of Alzheimer's Disease. Journal of Biological Chemistry, 2003, 278, 13905-13911.	1.6	177
58	The Transport Mechanism of Extracellular Vesicles at the Blood-Brain Barrier. Current Pharmaceutical Design, 2018, 23, 6206-6214.	0.9	177
59	Aluminum-Induced neurotoxicity: Alterations in membrane function at the blood-brain barrier. Neuroscience and Biobehavioral Reviews, 1989, 13, 47-53.	2.9	172
60	HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Research, 2005, 1045, 57-63.	1.1	170
61	Expression of TNF and the Necessity of TNF Receptors in Bleomycin-Induced Lung Injury in Mice. Experimental Lung Research, 1998, 24, 721-743.	0.5	166
62	Permeability of the blood–brain barrier to neurotrophins. Brain Research, 1998, 788, 87-94.	1.1	164
63	Tumor Necrosis Factor-α: a Neuromodulator in the CNS. Neuroscience and Biobehavioral Reviews, 1997, 21, 603-613.	2.9	163
64	Characterization of Blood-Brain Barrier Permeability to PYY3-36 in the Mouse. Journal of Pharmacology and Experimental Therapeutics, 2003, 306, 948-953.	1.3	162
65	Gut reactions: How the blood–brain barrier connects the microbiome and the brain. Experimental Biology and Medicine, 2018, 243, 159-165.	1.1	161
66	Role of the Blood-Brain Barrier in Central Nervous System Insulin Resistance. Frontiers in Neuroscience, 2019, 13, 521.	1.4	159
67	Peptides and the blood–brain barrier. Peptides, 2015, 72, 16-19.	1.2	157
68	Blood-borne interleukin-1 receptor antagonist crosses the blood-brain barrier. Journal of Neuroimmunology, 1994, 55, 153-160.	1.1	156
69	CNS tau efflux via exosomes is likely increased in Parkinson's disease but not in Alzheimer's disease. Alzheimer's and Dementia, 2016, 12, 1125-1131.	0.4	154
70	Permeability of the blood-brain barrier to amylin. Life Sciences, 1995, 57, 1993-2001.	2.0	152
71	Blood to brain transport of interleukin links the immune and central nervous systems. Life Sciences, 1991, 48, PL117-PL121.	2.0	151
72	Intranasal Delivery of Proteins and Peptides in the Treatment of Neurodegenerative Diseases. AAPS Journal, 2015, 17, 780-787.	2.2	151

#	Article	IF	Citations
73	Angiotensin II Modulates BBB Permeability via Activation of the AT ₁ Receptor in Brain Endothelial Cells. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 640-647.	2.4	150
74	Quantitative proteomics analysis of specific protein expression and oxidative modification in aged senescence-accelerated-prone 8 mice brain. Neuroscience, 2004, 126, 915-926.	1.1	148
75	Permeability of the blood–brain barrier to a novel satiety molecule nesfatin-1. Peptides, 2007, 28, 2372-2381.	1.2	148
76	Physiology and pathology of the blood-brain barrier: implications for microbial pathogenesis, drug delivery and neurodegenerative disorders. Journal of NeuroVirology, 1999, 5, 538-555.	1.0	146
77	Developmentally regulated mannose 6-phosphate receptor-mediated transport of a lysosomal enzyme across the blood-brain barrier. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12658-12663.	3.3	146
78	A Physiological Role for Amyloid- \hat{l}^2 Protein: Enhancement of Learning and Memory. Journal of Alzheimer's Disease, 2010, 19, 441-449.	1.2	144
79	Drug delivery to the brain in Alzheimer's disease: Consideration of the blood–brain barrier. Advanced Drug Delivery Reviews, 2012, 64, 629-639.	6.6	144
80	Peptides crossing the blood–brain barrier: some unusual observations. Brain Research, 1999, 848, 96-100.	1.1	140
81	The many lives of leptin. Peptides, 2004, 25, 331-338.	1.2	139
82	Alpha synuclein is transported into and out of the brain by the blood–brain barrier. Peptides, 2014, 62, 197-202.	1.2	138
83	Permeability of the blood–brain barrier to HIV-1 Tat. Experimental Neurology, 2005, 193, 218-227.	2.0	137
84	Intrathecal delivery of protein therapeutics to the brain: A critical reassessment., 2014, 144, 114-122.		137
85	Leptin Transport Across the Blood-Brain Barrier: Implications for the Cause and Treatment of Obesity. Current Pharmaceutical Design, 2001, 7, 125-133.	0.9	135
86	Decreased levels of PSD95 and two associated proteins and increased levels of BCl ₂ and caspase 3 in hippocampus from subjects with amnestic mild cognitive impairment: Insights into their potential roles for loss of synapses and memory, accumulation of $A\hat{I}^2$, and neurodegeneration in a prodromal stage of Alzheimer's disease. Journal of Neuroscience Research, 2010, 88, 469-477.	1.3	135
87	The neurotrophins and their receptors: Structure, function, and neuropathology. Neuroscience and Biobehavioral Reviews, 1994, 18, 143-159.	2.9	132
88	Ghrelin-induced feeding is dependent on nitric oxide. Peptides, 2003, 24, 913-918.	1.2	132
89	Brain Uptake of the Glucagon-Like Peptide-1 Antagonist Exendin(9-39) after Intranasal Administration. Journal of Pharmacology and Experimental Therapeutics, 2004, 309, 469-475.	1.3	132
90	Effect of Diabetes Mellitus on the Permeability of the Blood–Brain Barrier to Insulin. Peptides, 1997, 18, 1577-1584.	1.2	131

#	Article	IF	CITATIONS
91	Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood–brain barrier. Peptides, 2008, 29, 2061-2065.	1.2	129
92	A physiological role for amyloid-beta protein:enhancement of learning and memory. Journal of Alzheimer's Disease, 2010, 19, 441-9.	1.2	126
93	Passage of erythropoietic agents across the blood–brain barrier: a comparison of human and murine erythropoietin and the analog darbepoetin alfa. European Journal of Pharmacology, 2004, 505, 93-101.	1.7	124
94	Extra Virgin Olive Oil Improves Learning and Memory in SAMP8 Mice. Journal of Alzheimer's Disease, 2012, 28, 81-92.	1.2	124
95	Permeability of the blood-brain barrier to neuropeptides: The case for penetration. Psychoneuroendocrinology, 1985, 10, 385-399.	1.3	122
96	Transport of Human Immunodeficiency Virus Type 1 Pseudoviruses across the Blood-Brain Barrier: Role of Envelope Proteins and Adsorptive Endocytosis. Journal of Virology, 2001, 75, 4681-4691.	1.5	122
97	Effects of orexin-A on memory processing. Peptides, 2002, 23, 1683-1688.	1.2	122
98	Brain Meets Body: The Blood-Brain Barrier as an Endocrine Interface. Endocrinology, 2012, 153, 4111-4119.	1.4	122
99	Enhanced leptin transport across the blood–brain barrier by α1-adrenergic agents. Brain Research, 2001, 899, 209-217.	1.1	121
100	Antisense directed at the $\hat{Al^2}$ region of APP decreases brain oxidative markers in aged senescence accelerated mice. Brain Research, 2004, 1018, 86-96.	1.1	121
101	Triglycerides cross the blood–brain barrier and induce central leptin and insulin receptor resistance. International Journal of Obesity, 2018, 42, 391-397.	1.6	120
102	Upregulation of the p75 But Not the p55 TNF- α Receptor mRNA after Silica and Bleomycin Exposure and Protection from Lung Injury in Double Receptor Knockout Mice. American Journal of Respiratory Cell and Molecular Biology, 1999, 20, 825-833.	1.4	118
103	Leucine competes with kynurenine for blood-to-brain transport and prevents lipopolysaccharide-induced depression-like behavior in mice. Molecular Psychiatry, 2019, 24, 1523-1532.	4.1	118
104	Proteomic analysis of specific brain proteins in aged SAMP8 mice treated with alpha-lipoic acid: implications for aging and age-related neurodegenerative disorders. Neurochemistry International, 2005, 46, 159-168.	1.9	117
105	Healthy aging and the blood–brain barrier. Nature Aging, 2021, 1, 243-254.	5.3	116
106	Partial saturation and regional variation in the blood-to-brain transport of leptin in normal weight mice. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E1158-E1165.	1.8	115
107	Oxidative modification to LDL receptor-related protein 1 in hippocampus from subjects with Alzheimer disease: Implications for \hat{Al}^2 accumulation in AD brain. Free Radical Biology and Medicine, 2010, 49, 1798-1803.	1.3	115
108	Testing the Neurovascular Hypothesis of Alzheimer's Disease: LRP-1 Antisense Reduces Blood-brain Barrier Clearance, Increases Brain Levels of Amyloid-Î ² Protein, and Impairs Cognition. Journal of Alzheimer's Disease, 2009, 17, 553-570.	1.2	111

#	Article	IF	Citations
109	HIV proteins (gp120 and Tat) and methamphetamine in oxidative stress-induced damage in the brain: Potential role of the thiol antioxidant N-acetylcysteine amide. Free Radical Biology and Medicine, 2010, 48, 1388-1398.	1.3	109
110	Fate of Leptin after Intracerebroventricular Injection into the Mouse Brain. Endocrinology, 1998, 139, 4556-4562.	1.4	108
111	Age-Associated Changes in the Immune System and Blood–Brain Barrier Functions. International Journal of Molecular Sciences, 2019, 20, 1632.	1.8	107
112	Passage of human amyloid β-protein 1–40 across the murine blood-brain barrier. Life Sciences, 1994, 55, 1643-1650.	2.0	106
113	Unidirectional Specific and Modulated Brain to Blood Transport of Corticotropin-Releasing Hormone. Neuroendocrinology, 1996, 63, 338-348.	1.2	106
114	Peroxisome Proliferator-Activated Receptor-Î ³ -Mediated Positive Energy Balance in the Rat Is Associated with Reduced Sympathetic Drive to Adipose Tissues and Thyroid Status. Endocrinology, 2008, 149, 2121-2130.	1.4	106
115	Disruption of the hippocampal and hypothalamic blood–brain barrier in a diet-induced obese model of type II diabetes: prevention and treatment by the mitochondrial carbonic anhydrase inhibitor, topiramate. Fluids and Barriers of the CNS, 2019, 16, 1.	2.4	106
116	Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12. Brain Research, 2005, 1056, 132-138.	1.1	105
117	Saturable transport of peptides across the blood-brain barrier. Life Sciences, 1987, 41, 1319-1338.	2.0	104
118	Passage of peptides across the blood-brain barrier: Pathophysiological perspectives. Life Sciences, 1996, 59, 1923-1943.	2.0	104
119	Starvation and Triglycerides Reverse the Obesity-Induced Impairment of Insulin Transport at the Blood-Brain Barrier. Endocrinology, 2008, 149, 3592-3597.	1.4	104
120	Topiramate Treatment Protects Blood-Brain Barrier Pericytes from Hyperglycemia-Induced Oxidative Damage in Diabetic Mice. Endocrinology, 2012, 153, 362-372.	1.4	104
121	Carrier-mediated transport of vasorpressin across the blood-brain barrier of the mouse. Journal of Neuroscience Research, 1987, 18, 326-332.	1.3	103
122	Leptin transport across the blood–brain barrier of the Koletsky rat is not mediated by a product of the leptin receptor gene. Brain Research, 2002, 950, 130-136.	1.1	102
123	Lipopolysaccharide impairs amyloid beta efflux from brain: altered vascular sequestration, cerebrospinal fluid reabsorption, peripheral clearance and transporter function at the blood–brain barrier. Journal of Neuroinflammation, 2012, 9, 150.	3.1	102
124	Blood to Brain and Brain to Blood Passage of Native Horseradish Peroxidase, Wheat Germ Agglutinin, and Albumin: Pharmacokinetic and Morphological Assessments. Journal of Neurochemistry, 1994, 62, 2404-2419.	2.1	101
125	Is Obesity a Disease of the Blood-Brain Barrier? Physiological, Pathological, and Evolutionary Considerations. Current Pharmaceutical Design, 2003, 9, 801-809.	0.9	101
126	Central Nervous System Delivery of Intranasal Insulin: Mechanisms of Uptake and Effects on Cognition. Journal of Alzheimer's Disease, 2015, 47, 715-728.	1.2	100

#	Article	IF	CITATIONS
127	The blood–brain barrier as an endocrine tissue. Nature Reviews Endocrinology, 2019, 15, 444-455.	4.3	100
128	Frailty and the aging male. Aging Male, 2005, 8, 135-140.	0.9	99
129	Interactions of SARS-CoV-2 with the Blood–Brain Barrier. International Journal of Molecular Sciences, 2021, 22, 2681.	1.8	99
130	Aluminum complexing enhances amyloid β protein penetration of blood–brain barrier. Brain Research, 2006, 1116, 215-221.	1.1	98
131	Loss of Appendicular Muscle Mass and Loss of Muscle Strength in Young Postmenopausal Women. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2007, 62, 330-335.	1.7	98
132	A novel antioxidant N-acetylcysteine amide prevents gp120- and Tat-induced oxidative stress in brain endothelial cells. Experimental Neurology, 2006, 201, 193-202.	2.0	97
133	Pegylated Leptin Antagonist Is a Potent Orexigenic Agent: Preparation and Mechanism of Activity. Endocrinology, 2009, 150, 3083-3091.	1.4	96
134	Lipids and Cognition. Journal of Alzheimer's Disease, 2010, 20, 737-747.	1.2	96
135	Permeability of the Blood-Brain Barrier to Soluble Cytokine Receptors. NeuroImmunoModulation, 1995, 2, 161-165.	0.9	95
136	Blood-Brain Barriers in Obesity. AAPS Journal, 2017, 19, 921-930.	2.2	95
137	Anti-amyloid beta protein antibody passage across the blood–brain barrier in the SAMP8 mouse model of Alzheimer's disease: An age-related selective uptake with reversal of learning impairment. Experimental Neurology, 2007, 206, 248-256.	2.0	94
138	Delivery of Galanin-Like Peptide to the Brain: Targeting with Intranasal Delivery and Cyclodextrins. Journal of Pharmacology and Experimental Therapeutics, 2008, 325, 513-519.	1.3	94
139	Insulin transport across the blood–brain barrier can occur independently of the insulin receptor. Journal of Physiology, 2018, 596, 4753-4765.	1.3	94
140	A brain-to-blood carrier-mediated transport system for small, N-Tyrosinated peptides. Pharmacology Biochemistry and Behavior, 1984, 21, 943-946.	1.3	93
141	N-Acetylcysteine amide protects against methamphetamine-induced oxidative stress and neurotoxicity in immortalized human brain endothelial cells. Brain Research, 2009, 1275, 87-95.	1.1	93
142	Permeability of the murine blood-brain barrier to some octapeptide analogs of somatostatin Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 6762-6766.	3.3	92
143	Blood–Brain Barrier Permeability to Ebiratide and TNF in Acute Spinal Cord Injury. Experimental Neurology, 1997, 146, 367-373.	2.0	92
144	The Blood-Brain Barrier as a Cause of Obesity. Current Pharmaceutical Design, 2008, 14, 1606-1614.	0.9	92

#	Article	IF	CITATIONS
145	Studies of the slow bidirectional transport of iron and transferrin across the blood-brain barrier. Brain Research Bulletin, 1988, 21, 881-885.	1.4	91
146	The Blood-Brain Barrier in NeuroAIDS. Current HIV Research, 2006, 4, 259-266.	0.2	90
147	Efflux of human and mouse amyloid \hat{l}^2 proteins $1\hat{a}\in 40$ and $1\hat{a}\in 42$ from brain: impairment in a mouse model of alzheimer's disease. Neuroscience, 2003, 121, 487-492.	1.1	89
148	Interleukin-1α in blood has direct access to cortical brain cells. Neuroscience Letters, 1993, 163, 41-44.	1.0	88
149	The effects of group and individual animal-assisted therapy on loneliness in residents of long-term care facilities. Anthrozoos, 2005, 18, 396-408.	0.7	88
150	The blood-brain barrier: Connecting the gut and the brain. Regulatory Peptides, 2008, 149, 11-14.	1.9	86
151	The extracellular matrix of the blood–brain barrier: structural and functional roles in health, aging, and Alzheimer's disease. Tissue Barriers, 2019, 7, 1651157.	1.6	85
152	Adiponectin does not cross the blood-brain barrier but modifies cytokine expression of brain endothelial cells. Diabetes, 2006, 55, 141-7.	0.3	84
153	Effect of Dietary n-3 Polyunsaturated Fatty Acids on Brain Lipid Fatty Acid Composition, Learning Ability, and Memory of Senescence-Accelerated Mouse. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2008, 63, 1153-1160.	1.7	83
154	High glucose-induced mitochondrial respiration and reactive oxygen species in mouse cerebral pericytes is reversed by pharmacological inhibition of mitochondrial carbonic anhydrases: Implications for cerebral microvascular disease in diabetes. Biochemical and Biophysical Research Communications, 2013, 440, 354-358.	1.0	83
155	Primary Adrenal Hyperplasia: A New Subset of Primary Hyperaldosteronism. Journal of Clinical Endocrinology and Metabolism, 1984, 58, 783-785.	1.8	82
156	Isolation of Peptide Transport System-6 from Brain Endothelial Cells: Therapeutic Effects with Antisense Inhibition in Alzheimer and Stroke Models. Journal of Cerebral Blood Flow and Metabolism, 2009, 29, 411-422.	2.4	82
157	Inflammation-induced dysfunction of the low-density lipoprotein receptor-related protein-1 at the blood–brain barrier: Protection by the antioxidant N-acetylcysteine. Brain, Behavior, and Immunity, 2012, 26, 1085-1094.	2.0	81
158	Interleukin-2 does not cross the blood-brain barrier by a saturable transport system. Brain Research Bulletin, 1994, 34, 103-109.	1.4	79
159	HIV-1 protein gp120 crosses the blood-brain barrier: Role of adsorptive endocytosis. Life Sciences, 1997, 61, PL119-PL125.	2.0	79
160	Adsorptive Endocytosis of HIV-1gp120 by Blood–Brain Barrier Is Enhanced by Lipopolysaccharide. Experimental Neurology, 1999, 156, 165-171.	2.0	78
161	Highly active antiretroviral therapy drug combination induces oxidative stress and mitochondrial dysfunction in immortalized human blood–brain barrier endothelial cells. Free Radical Biology and Medicine, 2011, 50, 801-810.	1.3	78
162	Opposite direction of transport across the blood-brain barrier for Tyr-MIF-1 and MIF-1: Comparison with morphine. Peptides, 1994, 15, 23-29.	1.2	77

#	Article	IF	Citations
163	Polypeptide Point Modifications with Fatty Acid and Amphiphilic Block Copolymers for Enhanced Brain Delivery. Bioconjugate Chemistry, 2005, 16, 793-802.	1.8	76
164	Blood–Brain Barrier Disruption and Neurovascular Unit Dysfunction in Diabetic Mice: Protection with the Mitochondrial Carbonic Anhydrase Inhibitor Topiramate. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 452-459.	1.3	76
165	The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiology and Behavior, 2006, 89, 472-476.	1.0	75
166	Effect of Alpha-Lipoic Acid on Memory, Oxidation, and Lifespan in SAMP8 Mice. Journal of Alzheimer's Disease, 2012, 32, 447-455.	1.2	75
167	Rapid Transport of CCL11 across the Blood-Brain Barrier: Regional Variation and Importance of Blood Cells. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 497-507.	1.3	75
168	Development of Novel Therapeutics Targeting the Blood–Brain Barrier: From Barrier to Carrier. Advanced Science, 2021, 8, e2101090.	5.6	75
169	Lipid peroxidation in brain during aging in the senescence-accelerated mouse (SAM). Neurobiology of Aging, 2007, 28, 1170-1178.	1.5	74
170	Mannose 6-Phosphate Receptor–mediated Transport of Sulfamidase Across the Blood–brain Barrier in the Newborn Mouse. Molecular Therapy, 2008, 16, 1261-1266.	3.7	74
171	Testosterone modulates gene expression pathways regulating nutrient accumulation, glucose metabolism and protein turnover in mouse skeletal muscle. Journal of Developmental and Physical Disabilities, 2011, 34, 55-68.	3.6	74
172	Conjugates of Superoxide Dismutase 1 with Amphiphilic Poly(2-oxazoline) Block Copolymers for Enhanced Brain Delivery: Synthesis, Characterization and Evaluation in Vitro and in Vivo. Molecular Pharmaceutics, 2013, 10, 360-377.	2.3	74
173	Neurovascular unit crosstalk: Pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 1104-1118.	2.4	74
174	Proteomic identification of less oxidized brain proteins in aged senescence-accelerated mice following administration of antisense oligonucleotide directed at the $A\hat{l}^2$ region of amyloid precursor protein. Molecular Brain Research, 2005, 138, 8-16.	2.5	73
175	The effects of high fat diets on the blood–brain barrier transport of leptin: Failure or adaptation?. Physiology and Behavior, 2006, 88, 244-248.	1.0	72
176	Role of the blood–brain barrier in the evolution of feeding and cognition. Annals of the New York Academy of Sciences, 2012, 1264, 13-19.	1.8	72
177	Regional transport of TNF- $\hat{l}\pm$ across the blood-brain barrier in young ICR and young and aged SAMP8 mice. Neurobiology of Aging, 2001, 22, 671-676.	1.5	71
178	Transport of Pituitary Adenylate Cyclase-Activating Polypeptide Across the Blood-Brain Barrier and the Prevention of Ischemia-Induced Death of Hippocampal Neurons. Annals of the New York Academy of Sciences, 2006, 805, 270-277.	1.8	71
179	Nano-particle delivery of brain derived neurotrophic factor after focal cerebral ischemia reduces tissue injury and enhances behavioral recovery. Pharmacology Biochemistry and Behavior, 2016, 150-151, 48-56.	1.3	71
180	Transport across the Blood-Brain Barrier of Pluronic Leptin. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 253-263.	1.3	68

#	Article	IF	CITATIONS
181	Blast exposure elicits blood-brain barrier disruption and repair mediated by tight junction integrity and nitric oxide dependent processes. Scientific Reports, 2018, 8, 11344.	1.6	67
182	Passage of vasoactive intestinal peptide across the blood–brain barrier. Peptides, 2003, 24, 437-444.	1.2	66
183	Dietary Components in the Development of Leptin Resistance. Advances in Nutrition, 2013, 4, 164-175.	2.9	66
184	Antiâ€ILâ€6 neutralizing antibody modulates bloodâ€brain barrier function in the ovine fetus. FASEB Journal, 2015, 29, 1739-1753.	0.2	66
185	Blast exposure causes dynamic microglial/macrophage responses and microdomains of brain microvessel dysfunction. Neuroscience, 2016, 319, 206-220.	1.1	66
186	Estradiol potentiates acetylcholine and glutamate-mediated post-trial memory processing in the hippocampus. Brain Research, 2000, 864, 263-269.	1.1	65
187	Cynical hostility, depressive symptoms, and the expression of inflammatory risk markers for coronary heart disease. Journal of Behavioral Medicine, 2003, 26, 501-515.	1.1	65
188	The Blood–Brain Barrier in Psychoneuroimmunology. Neurologic Clinics, 2006, 24, 413-419.	0.8	65
189	Intranasal Administration as a Route for Drug Delivery to the Brain: Evidence for a Unique Pathway for Albumin. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 54-60.	1.3	65
190	Are the Extracelluar Pathways a Conduit for the Delivery of Therapeutics to the Brain?. Current Pharmaceutical Design, 2004, 10, 1365-1370.	0.9	65
191	Tyr-MIF-1 and Met-enkephalin share a saturable blood-brain barrier transport system. Peptides, 1987, 8, 899-903.	1.2	64
192	Alzheimer's disease through the eye of a mouse. Peptides, 2002, 23, 589-599.	1.2	64
193	Quantifying carrier-mediated transport of peptides from the brain to the blood. Methods in Enzymology, 1989, 168, 652-660.	0.4	63
194	Anorectic effects of circulating cytokines: role of the vascular blood-brain barrier. Nutrition, 2001, 17, 434-437.	1.1	63
195	Ischemia–reperfusion impairs blood–brain barrier function and alters tight junction protein expression in the ovine fetus. Neuroscience, 2012, 226, 89-100.	1.1	63
196	Prolactin transport into mouse brain is independent of prolactin receptor. FASEB Journal, 2016, 30, 1002-1010.	0.2	63
197	Uptake and degradation of blood-borne insulin by the olfactory bulb. Peptides, 1999, 20, 373-378.	1.2	62
198	Evidence that [125I]N-Tyr-delta sleep-inducing peptide crosses the blood-brain barrier by a non-competitive mechanism. Brain Research, 1984, 301, 201-207.	1.1	61

#	Article	IF	Citations
199	Aluminum alters the permeability of the blood-brain barrier to some non-peptides. Neuropharmacology, 1985, 24, 407-412.	2.0	61
200	Differential Transport of a Secretin Analog across the Blood-Brain and Blood-Cerebrospinal Fluid Barriers of the Mouse. Journal of Pharmacology and Experimental Therapeutics, 2002, 302, 1062-1069.	1.3	61
201	Serum Leptin Levels as a Marker for a Syndrome X-Like Condition in Wild Baboons. Journal of Clinical Endocrinology and Metabolism, 2003, 88, 1234-1240.	1.8	61
202	Intranasal administration of PACAP: Uptake by brain and regional brain targeting with cyclodextrins. Peptides, 2012, 36, 168-175.	1.2	61
203	The interleukins- $1\hat{l}_{\pm}$, $-1\hat{l}_{2}$, and -2 do not acutely disrupt the murine blood - brain barrier. International Journal of Immunopharmacology, 1992, 14, 629-636.	1.1	60
204	Lipopolysaccharide Impairs Blood–Brain Barrier P-glycoprotein Function in Mice Through Prostaglandin- and Nitric Oxide-Independent Pathways. Journal of NeuroImmune Pharmacology, 2009, 4, 276-282.	2.1	60
205	Permeability of the blood-brain barrier to peptides: An approach to the development of therapeutically useful analogs. Peptides, 1992, 13, 1289-1294.	1.2	59
206	The putative blood-brain barrier transporter for the \hat{l}^2 -amyloid binding protein apolipoprotein j is saturated at physiological concentrations. Life Sciences, 1997, 60, PL115-PL118.	2.0	59
207	Brain pericytes increase the lipopolysaccharide-enhanced transcytosis of HIV-1 free virus across the in vitro bloodâ€"brain barrier: evidence for cytokine-mediated pericyte-endothelial cell crosstalk. Fluids and Barriers of the CNS, 2013, 10, 23.	2.4	59
208	Ghrelin transport across the blood–brain barrier can occur independently of the growth hormone secretagogue receptor. Molecular Metabolism, 2018, 18, 88-96.	3.0	59
209	Blood–Brain Barrier and Energy Balance. Obesity, 2006, 14, 234S-237S.	1.5	58
210	Delivery of peptides to the brain: Emphasis on therapeutic development. Biopolymers, 2008, 90, 589-594.	1.2	58
211	Central and Peripheral Administration of Antisense Oligonucleotide Targeting Amyloid-Î ² Protein Precursor Improves Learning and Memory and Reduces Neuroinflammatory Cytokines in Tg2576 (AÎ ² PPswe) Mice. Journal of Alzheimer's Disease, 2014, 40, 1005-1016.	1.2	58
212	Radioimmunoassay of DSIP-like material in human blood: Possible protein binding. Pharmacology Biochemistry and Behavior, 1981, 15, 969-974.	1.3	57
213	Brain uptake pharmacokinetics of incretin receptor agonists showing promise as Alzheimer's and Parkinson's disease therapeutics. Biochemical Pharmacology, 2020, 180, 114187.	2.0	57
214	Science, Citation, and Funding. Science, 1991, 251, 1410-1411.	6.0	56
215	Persistence of blood-to-brain transport of leptin in obese leptin-deficient and leptin receptor-deficient mice. Brain Research, 2000, 873, 165-167.	1.1	56
216	Delivery of testosterone to the brain by intranasal administration: Comparison to intravenous testosterone. Journal of Drug Targeting, 2009, 17, 91-97.	2.1	56

#	Article	IF	CITATIONS
217	In vitro modeling of blood–brain barrier and interface functions in neuroimmune communication. Fluids and Barriers of the CNS, 2020, 17, 26.	2.4	56
218	Central nervous system effects of peptides, 1980–1985: A cross-listing of peptides and their central actions from the first six years of the journal Peptides. Peptides, 1986, 7, 497-537.	1.2	55
219	D-[Ala1]-peptide T-Amide is transported from blood to brain by a saturable system. Brain Research Bulletin, 1987, 19, 629-633.	1.4	55
220	Strategies for the Delivery of Leptin to the CNS. Journal of Drug Targeting, 2002, 10, 297-308.	2.1	54
221	Nanoformulation of Brainâ€Derived Neurotrophic Factor with Target Receptorâ€Triggeredâ€Release in the Central Nervous System. Advanced Functional Materials, 2018, 28, 1703982.	7.8	54
222	Blood-Brain Barrier as a Regulatory Interface. Forum of Nutrition, 2010, 63, 102-110.	3.7	53
223	Peripheral Administration of Antisense Oligonucleotides Targeting the Amyloid-Î ² Protein Precursor Reverses AÎ ² PP and LRP-1 Overexpression in the Aged SAMP8 Mouse Brain. Journal of Alzheimer's Disease, 2012, 28, 951-960.	1.2	53
224	HIV-1-induced production of endothelin-1 in an in vitro model of the human blood???brain barrier. NeuroReport, 2002, 13, 1179-1183.	0.6	52
225	Epinephrine enhances lysosomal enzyme delivery across the blood–brain barrier by up-regulation of the mannose 6-phosphate receptor. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12873-12878.	3.3	52
226	Higher C-Reactive Protein and Soluble Tumor Necrosis Factor Receptor Levels Are Associated With Poor Physical Function and Disability: A Cross-Sectional Analysis of a Cohort of Late Middle-Aged African Americans. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 274-281.	1.7	52
227	Delta sleep-inducing peptide crosses the blood-brain-barrier in dogs: Some correlations with protein binding. Pharmacology Biochemistry and Behavior, 1982, 17, 1009-1014.	1.3	51
228	Nitric Oxide Isoenzymes Regulate Lipopolysaccharide-Enhanced Insulin Transport across the Blood-Brain Barrier. Endocrinology, 2008, 149, 1514-1523.	1.4	51
229	Evidence for a cholecystokinin gut-brain axis with modulation by bombesin. Peptides, 1980, 1, 347-351.	1.2	50
230	Potentiation of lead-induced cell death in PC12 cells by glutamate: Protection by N-acetylcysteine amide (NACA), a novel thiol antioxidant. Toxicology and Applied Pharmacology, 2006, 216, 197-205.	1.3	50
231	Tau Proteins Cross the Blood-Brain Barrier. Journal of Alzheimer's Disease, 2016, 55, 411-419.	1.2	50
232	Delivering peptides to the central nervous system: dilemmas and strategies. Pharmaceutical Research, 1991, 08, 1345-1350.	1.7	49
233	Diurnal Uptake of Circulating Interleukin- $1\hat{l}\pm$ by Brain, Spinal Cord, Testis and Muscle. NeuroImmunoModulation, 1998, 5, 36-41.	0.9	49
234	Chronic Ethanol Consumption Impairs Learning and Memory After Cessation of Ethanol. Alcoholism: Clinical and Experimental Research, 2005, 29, 971-982.	1.4	49

#	Article	IF	CITATIONS
235	Ovine Proinflammatory Cytokines Cross the Murine Blood-Brain Barrier by a Common Saturable Transport Mechanism. NeuroImmunoModulation, 2010, 17, 405-410.	0.9	49
236	Pharmacological Inhibition of Mitochondrial Carbonic Anhydrases Protects Mouse Cerebral Pericytes from High Glucose-Induced Oxidative Stress and Apoptosis. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 637-645.	1.3	49
237	Misleading concepts in the field of brain peptides. Peptides, 1984, 5, 249-253.	1.2	48
238	The opiate system in invertebrates. Peptides, 1994, 15, 1309-1329.	1.2	48
239	Permeability of the mouse blood–brain barrier to murine interleukin-2: predominance of a saturable efflux system. Brain, Behavior, and Immunity, 2004, 18, 434-442.	2.0	48
240	Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by luminal microvessel IL-6 and GM-CSF. Journal of Neuroinflammation, 2011, 8, 167.	3.1	48
241	Regional variation in transport of pancreatic polypeptide across the blood-brain barrier of mice. Pharmacology Biochemistry and Behavior, 1995, 51, 139-147.	1.3	47
242	Permeability of the blood-brain barrier to melanocortins. Peptides, 1995, 16, 1157-1161.	1.2	47
243	Relative contributions of peripheral and central sources to levels of IL- $1\hat{l}\pm$ in the cerebral cortex of mice: assessment with species-specific enzyme immunoassays. Journal of Neuroimmunology, 1997, 79, 22-28.	1.1	47
244	Characterization of lectin-mediated brain uptake of HIV-1 GP120., 1998, 54, 522-529.		47
245	Protein Conjugation with Amphiphilic Block Copolymers for Enhanced Cellular Delivery. Bioconjugate Chemistry, 2008, 19, 1071-1077.	1.8	47
246	Molecular Hydrogen in Drinking Water Protects against Neurodegenerative Changes Induced by Traumatic Brain Injury. PLoS ONE, 2014, 9, e108034.	1.1	47
247	Physiological Consequences of the Passage of Peptides Across the Blood-Brain Barrier. Reviews in the Neurosciences, 1993, 4, 365-72.	1.4	46
248	Selective transport of blood-borne interleukin- $1\hat{l}\pm$ into the posterior division of the septum of the mouse brain. Brain Research, 1995, 700, 83-88.	1.1	46
249	Regional differences in PACAP transport across the blood–brain barrier in mice: a possible influence of strain, amyloid β protein, and age. Peptides, 2002, 23, 2197-2202.	1.2	46
250	Aging and the blood-brain barrier: Changes in the carrier-mediated transport of peptides in rats. Neuroscience Letters, 1985, 61, 171-175.	1.0	45
251	Transport, uptake, and metabolism of blood-borne vasopressin by the blood-brain barrier. Brain Research, 1992, 590, 213-218.	1.1	45
252	Orexin-A-induced feeding is dependent on nitric oxide. Peptides, 2005, 26, 759-765.	1.2	45

#	Article	IF	Citations
253	Nitric oxide is a central component in neuropeptide regulation of appetite. Peptides, 2011, 32, 776-780.	1.2	45
254	Reversible association of the cytokines MIP-1 \hat{l} ± and MIP-1 \hat{l} 2 with the endothelia of the blood-brain barrier. Neuroscience Letters, 1996, 205, 202-206.	1.0	44
255	Serum Leptin Levels in Wild and Captive Populations of Baboons (Papio): Implications for the Ancestral Role of Leptin. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4315-4320.	1.8	43
256	Effects of lipopolysaccharide on leptin transport across the blood–brain barrier. Brain Research, 2004, 1016, 58-65.	1.1	43
257	Effects of a growth hormone-releasing hormone antagonist on telomerase activity, oxidative stress, longevity, and aging in mice. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22272-22277.	3.3	43
258	Differential penetration of DSIP peptides into rat brain. Pharmacology Biochemistry and Behavior, 1982, 17, 1187-1191.	1.3	42
259	Permanent and temporary inactivation of the hippocampus impairs T-maze footshock avoidance acquisition and retention. Brain Research, 2000, 872, 242-249.	1.1	42
260	Brain distribution and behavioral effects of progesterone and pregnenolone after intranasal or intravenous administration. European Journal of Pharmacology, 2010, 641, 128-134.	1.7	42
261	Sequestration of Centrally Administered Insulin by the Brain: Effects of Starvation, Aluminum, and TNF-α. Hormones and Behavior, 1996, 30, 280-286.	1.0	41
262	Developing drugs that can cross the blood-brain barrier: applications to Alzheimer's disease. BMC Neuroscience, 2008, 9, S2.	0.8	41
263	Increase in Presenilin 1 (PS1) levels in senescence-accelerated mice(SAMP8) may indirectly impair memory by affecting amyloid precursor protein(APP) processing. Journal of Experimental Biology, 2009, 212, 494-498.	0.8	41
264	Human Immunodeficiency Virus-1 Uses the Mannose-6-Phosphate Receptor to Cross the Blood-Brain Barrier. PLoS ONE, 2012, 7, e39565.	1.1	41
265	Memories Are Made of This: Recent Advances in Understanding Cognitive Impairments and Dementia. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2003, 58, M314-M321.	1.7	40
266	Copper complexing decreases the ability of amyloid beta peptide to cross the BBB and enter brain parenchyma. Peptides, 2007, 28, 1424-1432.	1.2	40
267	Lipopolysaccharide-enhanced transcellular transport of HIV-1 across the blood-brain barrier is mediated by the p38 mitogen-activated protein kinase pathway. Experimental Neurology, 2008, 210, 740-749.	2.0	40
268	Pluronic modified leptin with increased systemic circulation, brain uptake and efficacy for treatment of obesity. Journal of Controlled Release, 2014, 191, 34-46.	4.8	40
269	Interleukin-1β Transfer across the Blood–Brain Barrier in the Ovine Fetus. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1388-1395.	2.4	40
270	Neutralizing anti-interleukin-1β antibodies modulate fetal blood–brain barrier function after ischemia. Neurobiology of Disease, 2015, 73, 118-129.	2.1	40

#	Article	IF	CITATIONS
271	Carrier-Mediated Transport of Labeled Oxytocin from Brain to Blood. Neuroendocrinology, 1991, 53, 447-452.	1.2	39
272	The effect of cardiac arrest on the permeability of the mouse blood-brain and blood-spinal cord barrier to pituitary adenylate cyclase activating polypeptide (PACAP)â~†. Peptides, 1999, 20, 1337-1340.	1.2	39
273	Antagonists of growth hormone-releasing hormone cross the blood-brain barrier: A potential applicability to treatment of brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 12495-12500.	3.3	39
274	Effect of lipopolysaccharide on the transport of pituitary adenylate cyclase activating polypeptide across the blood–brain barrier. Experimental Neurology, 2005, 191, 137-144.	2.0	39
275	Lower serum DHEAS levels are associated with a higher degree of physical disability and depressive symptoms in middle-aged to older African American women. Maturitas, 2007, 57, 347-360.	1.0	39
276	Effects of Lead and Cadmium on Brain Endothelial Cell Survival, Monolayer Permeability, and Crucial Oxidative Stress Markers in an in Vitro Model of the Blood-Brain Barrier. Toxics, 2014, 2, 258-275.	1.6	39
277	Foreword: The Year in Review: Comments on Plants, Cyclodextrins, Microbiota, and Diabetes. Current Pharmaceutical Design, 2018, 24, 1-3.	0.9	39
278	Brain peptides: The dangers of constricted nomenclatures. Life Sciences, 1983, 32, 295-301.	2.0	38
279	Entry of DSIP peptides into dog CSF: Role of physicochemical and pharmacokinetic parameters. Brain Research Bulletin, 1986, 17, 155-158.	1.4	38
280	Inhibition of the brain to blood transport system for enkephalins and Tyr-MIF-1 in mice addicted or genetically predisposed to drinking ethanol. Alcohol, 1989, 6, 53-57.	0.8	38
281	Endogenous peptide Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) is transported from the brain to the blood by peptide transport system-1. Journal of Neuroscience Research, 1993, 35, 690-695.	1.3	38
282	Passage of leptin across the blood-testis barrier. American Journal of Physiology - Endocrinology and Metabolism, 1999, 276, E1099-E1104.	1.8	37
283	Regional Variations in the Transport of Interleukin- $1\hat{l}\pm$ across the Blood-Brain Barrier in ICR and Aging SAMP8 Mice. NeuroImmunoModulation, 2000, 8, 165-170.	0.9	37
284	Antibody to \hat{l}^2 -amyloid protein increases acetylcholine in the hippocampus of 12 month SAMP8 male mice. Life Sciences, 2003, 73, 555-562.	2.0	37
285	Foreword. Current Pharmaceutical Design, 2014, 20, 1-1.	0.9	37
286	Nitric oxide synthase mediates cerebellar dysfunction in mice exposed to repetitive blast-induced mild traumatic brain injury. Scientific Reports, 2020, 10, 9420.	1.6	37
287	Effect of Spinal Cord Injury on the Permeability of the Blood–Brain and Blood–Spinal Cord Barriers to the Neurotropin PACAP. Experimental Neurology, 1998, 151, 116-123.	2.0	36
288	The CNS as a target for peptides and peptide-based drugs. Expert Opinion on Drug Delivery, 2006, 3, 707-712.	2.4	36

#	Article	IF	CITATIONS
289	Insulin Resistance Syndrome in the Elderly. Diabetes Care, 2007, 30, 2369-2373.	4.3	36
290	Impairments in Brain-to-Blood Transport of Amyloid-Î ² and Reabsorption of Cerebrospinal Fluid in an Animal Model of Alzheimer's Disease are Reversed by Antisense Directed Against Amyloid-Î ² Protein Precursor. Journal of Alzheimer's Disease, 2011, 23, 599-605.	1.2	36
291	Stereospecific transport of Tyr-MIF-1 across the blood-brain barrier by peptide transport system-1. Brain Research Bulletin, 1990, 25, 589-592.	1.4	35
292	EEG evidence that morphine and an enkephalin analog cross the blood-brain barrier. Pharmacology Biochemistry and Behavior, 1991, 40, 771-774.	1.3	35
293	Chapter 21: Bidirectional passage of peptides across the blood-brain barrier. Progress in Brain Research, 1992, 91, 139-148.	0.9	35
294	Alveolar macrophage apoptosis and TNF- \hat{l}_{\pm} , but not p53, expression correlate with murine response to bleomycin. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1998, 275, L1208-L1218.	1.3	35
295	Serum amyloid A: an ozoneâ€induced circulating factor with potentially important functions in the lungâ€brain axis. FASEB Journal, 2017, 31, 3950-3965.	0.2	35
296	Periventricular penetration and disappearance of ICV Tyr-MIF-1, DAMGO, tyrosine, and albumin. Peptides, 1996, 17, 247-250.	1.2	34
297	Differential transport of rat and human interleukin-1α across the blood–brain barrier and blood–testis barrier in rats. Brain Research, 2000, 881, 57-61.	1.1	34
298	DHEAS improves learning and memory in aged SAMP8 mice but not in diabetic mice. Life Sciences, 2004, 75, 2775-2785.	2.0	34
299	The APOE Genotype: Modification of Therapeutic Responses in Alzheimer's Disease. Current Pharmaceutical Design, 2014, 21, 114-120.	0.9	34
300	Delivery of Therapeutic Peptides and Proteins to the CNS. Advances in Pharmacology, 2014, 71, 277-299.	1.2	34
301	Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease. Experimental Biology and Medicine, 2016, 241, 1676-1683.	1.1	34
302	Multiple lipopolysaccharide (LPS) injections alter interleukin 6 (IL-6), IL-7, IL-10 and IL-6 and IL-7 receptor mRNA in CNS and spleen. Neuroscience, 2017, 355, 9-21.	1.1	34
303	Cognitive benefits of lithium chloride in APP/PS1 mice are associated with enhanced brain clearance of \hat{l}^2 -amyloid. Brain, Behavior, and Immunity, 2018, 70, 36-47.	2.0	34
304	Genetics and sex influence peripheral and central innate immune responses and blood-brain barrier integrity. PLoS ONE, 2018, 13, e0205769.	1.1	34
305	Interactions of Lipids, Lipoproteins, and Apolipoproteins with the Blood-Brain Barrier. Pharmaceutical Research, 2021, 38, 1469-1475.	1.7	34
306	The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Current Pharmaceutical Design, 2020, 26, 1438-1447.	0.9	34

#	Article	IF	CITATIONS
307	A Decade of Changing Perceptions about Neuropeptides. Annals of the New York Academy of Sciences, 1990, 579, 1-7.	1.8	33
308	Binding, internalization, and membrane incorporation of human immunodeficiency virus-1 at the blood–brain barrier is differentially regulated. Neuroscience, 2004, 128, 143-153.	1.1	33
309	Leptin and adiponectin levels in middle-aged postmenopausal women: associations with lifestyle habits, hormones, and inflammatory markers—a cross-sectional study. Metabolism: Clinical and Experimental, 2006, 55, 1630-1636.	1.5	33
310	Soluble Interleukin-6 Receptor Induces Motor Stereotypies and Co-Localizes with Gp130 in Regions Linked to Cortico-Striato-Thalamo-Cortical Circuits. PLoS ONE, 2012, 7, e41623.	1.1	33
311	Increased Hyaluronan and TSG-6 in Association with Neuropathologic Changes of Alzheimer's Disease. Journal of Alzheimer's Disease, 2019, 67, 91-102.	1.2	33
312	Modulation of immunoactive levels of DSIP and blood-brain barrier permeability by lighting and diurnal rhythm. Journal of Neuroscience Research, 1985, 14, 347-355.	1.3	32
313	Transmission routes of HIV-1 gp120 from brain to lymphoid tissues. Brain Research, 1999, 822, 26-33.	1.1	32
314	ApoE and cerebral insulin: Trafficking, receptors, and resistance. Neurobiology of Disease, 2020, 137, 104755.	2.1	32
315	Review: Interactions Between the Blood-Brain Barrier and Endogenous Peptides: Emerging Clinical Implications. American Journal of the Medical Sciences, 1988, 295, 459-465.	0.4	31
316	Lipophilic Hexadentate Aluminum Complexes of New Phenolate-Derivatized Cyclohexanetriamine Ligands and Their Effect on the Peptide Transport System (PTS-1). Inorganic Chemistry, 1995, 34, 2143-2152.	1.9	31
317	Susceptibility of juvenile and adult blood–brain barrier to endothelin-1: regulation of P-glycoprotein and breast cancer resistance protein expression and transport activity. Journal of Neuroinflammation, 2012, 9, 273.	3.1	31
318	Saturable efflux of the peptides RC-160 and Tyr-MIF-1 by different parts of the blood-brain barrier. Brain Research Bulletin, 1994, 35, 179-182.	1.4	30
319	Somatostatin receptor subtype-4 agonist NNC 26–9100 decreases extracellular and intracellular Aβ1–42 trimers. European Journal of Pharmacology, 2012, 683, 116-124.	1.7	30
320	Tauopathies – Focus on Changes at the Neurovascular Unit. Current Alzheimer Research, 2017, 14, 790-801.	0.7	30
321	Alterations in Plasma microRNA and Protein Levels in War Veterans with Chronic Mild Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 1418-1430.	1.7	30
322	The aluminum-induced increase in blood-brain barrier permeability to delta-sleep-inducing peptide occurs throughout the brain and is independent of phosphorus and acetylcholinesterase levels. Psychopharmacology, 1985, 86, 84-89.	1.5	29
323	Permeability of the blood-brain barrier to the neurotensin8–13 analog NT1. Brain Research, 1995, 695, 59-63.	1.1	29
324	Passage of murine scrapie prion protein across the mouse vascular blood–brain barrier. Biochemical and Biophysical Research Communications, 2004, 318, 125-130.	1.0	29

#	Article	IF	Citations
325	Pharmacokinetics and modeling of immune cell trafficking: quantifying differential influences of target tissues versus lymphocytes in SJL and lipopolysaccharide-treated mice. Journal of Neuroinflammation, 2012, 9, 231.	3.1	29
326	Passage through the Ocular Barriers and Beneficial Effects in Retinal Ischemia of Topical Application of PACAP1-38 in Rodents. International Journal of Molecular Sciences, 2017, 18, 675.	1.8	29
327	Small molecules as central nervous system therapeutics: old challenges, new directions, and a philosophic divide. Future Medicinal Chemistry, 2019, 11, 489-493.	1.1	29
328	Routes for the delivery of insulin to the central nervous system: A comparative review. Experimental Neurology, 2019, 313, 10-15.	2.0	29
329	Foreword: Globalization of the Scientific Literature: CPD as a Case Study. Current Pharmaceutical Design, 2017, 23, 1-2.	0.9	29
330	Delta sleep-inducing peptide (DSIP)-like material is absorbed by the gastrointestinal tract of the neonatal rat. Life Sciences, 1983, 33, 1587-1597.	2.0	28
331	The Blood–Brain Barrier in Psychoneuroimmunology. Immunology and Allergy Clinics of North America, 2009, 29, 223-228.	0.7	28
332	Disruption of the integrity and function of brain microvascular endothelial cells in culture by exposure to diesel engine exhaust particles. Toxicology Letters, 2013, 220, 1-7.	0.4	28
333	Intranasal delivery of N-terminal modified leptin-pluronic conjugate for treatment of obesity. Journal of Controlled Release, 2017, 263, 172-184.	4.8	28
334	Hypothalamic perineuronal net assembly is required for sustained diabetes remission induced by fibroblast growth factor 1 in rats. Nature Metabolism, 2020, 2, 1025-1033.	5.1	28
335	The Blood–Brain Barrier, Oxidative Stress, and Insulin Resistance. Antioxidants, 2021, 10, 1695.	2.2	28
336	Effect of neurotransmitters on the system that transports Tyr-MIF-1 and the enkephalins across the blood-brain barrier: a dominant role for serotonin. Psychopharmacology, 1989, 98, 380-385.	1.5	27
337	Positron Emission Tomography Shows that Intrathecal Leptin Reaches the Hypothalamus in Baboons. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 878-883.	1.3	27
338	Permeability of the Blood-Brain Barrier to a Rhenacarborane. Journal of Pharmacology and Experimental Therapeutics, 2009, 329, 608-614.	1.3	27
339	Ocular Delivery of PACAP1-27 Protects the Retina From Ischemic Damage in Rodents., 2016, 57, 6683.		27
340	The Effects of Normal Aging on Regional Accumulation of Hyaluronan and Chondroitin Sulfate Proteoglycans in the Mouse Brain. Journal of Histochemistry and Cytochemistry, 2018, 66, 697-707.	1.3	27
341	Passage of Tyr-MIF-1 from blood to brain. Brain Research Bulletin, 1989, 23, 439-442.	1.4	26
342	Lipophilic hexadentate gallium, indium and iron complexes of new phenolate-derivatized cyclohexanetriamines as potential in vivo metal-transfer reagents. Journal of the Chemical Society Dalton Transactions, 1995, , 1677-1688.	1.1	26

#	Article	IF	Citations
343	Obesity-inducing lesions of the central nervous system alter leptin uptake by the blood-brain barrier. Life Sciences, 2001, 69, 2765-2773.	2.0	26
344	Somatostatin receptor subtype-4 agonist NNC 26-9100 mitigates the effect of soluble \hat{Al}^2 42 oligomers via a metalloproteinase-dependent mechanism. Brain Research, 2013, 1520, 145-156.	1.1	26
345	Sleep fragmentation and sepsis differentially impact blood–brain barrier integrity and transport of tumor necrosis factor-α in aging. Brain, Behavior, and Immunity, 2015, 50, 259-265.	2.0	26
346	Decoding perineuronal net glycan sulfation patterns in the Alzheimer's disease brain. Alzheimer's and Dementia, 2022, 18, 942-954.	0.4	26
347	Granulocyte Macrophage-Colony Stimulating Factor Crosses the Blood-Testis Barrier in Mice1. Biology of Reproduction, 1997, 57, 822-826.	1.2	25
348	The role of the blood-brain barrier transporter PTS-1 in regulating concentrations of methionine enkephalin in blood and brain. Alcohol, 1997, 14, 237-245.	0.8	25
349	Relative contributions of a CVO and the microvascular bed to delivery of blood-borne IL-1 $\hat{1}$ ± to the brain. American Journal of Physiology - Endocrinology and Metabolism, 1998, 275, E207-E212.	1.8	25
350	Nitric Oxide Activity and Isoenzyme Expression in the Senescence-Accelerated Mouse P8 Model of Alzheimer's Disease: Effects of Anti-Amyloid Antibody and Antisense Treatments. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 1025-1030.	1.7	25
351	Principles of strategic drug delivery to the brain (SDDB): Development of anorectic and orexigenic analogs of leptin. Physiology and Behavior, 2011, 105, 145-149.	1.0	25
352	Role of OATP transporters in steroid uptake by prostate cancer cells in vivo. Prostate Cancer and Prostatic Diseases, 2017, 20, 20-27.	2.0	25
353	Transport of thyroxine across the blood-brain barrier is directed primarily from brain to blood in the mouse. Life Sciences, 1985, 37, 2407-2414.	2.0	24
354	Mediation of serotonin-induced analgesia by the 5HT2 receptor in the pentobarbital anesthetized mouse model. Brain Research Bulletin, 1988, 21, 887-891.	1.4	24
355	Differential metabolism of Tyr-MIF-1 and MIF-1 in rat and human plasma. Biochemical Pharmacology, 1994, 47, 699-710.	2.0	24
356	Aluminum-sensitive degradation of amyloid \hat{l}^2 -protein $1\hat{a}$ \in 40 by murine and human intracellular enzymes. Neurotoxicology and Teratology, 1996, 18, 671-677.	1.2	24
357	Nitrative Stress in Cerebral Endothelium is Mediated by mGluR5 in Hyperhomocysteinemia. Journal of Cerebral Blood Flow and Metabolism, 2012, 32, 825-834.	2.4	24
358	Andrographolide attenuates LPS-stimulated up-regulation of C-C and C-X-C motif chemokines in rodent cortex and primary astrocytes. Journal of Neuroinflammation, 2016, 13, 34.	3.1	24
359	A Basic ApoE-Based Peptide Mediator to Deliver Proteins across the Blood-Brain Barrier: Long-Term Efficacy, Toxicity, and Mechanism. Molecular Therapy, 2017, 25, 1531-1543.	3.7	24
360	CSF-plasma relationships for DSIP and some other neuropeptides. Pharmacology Biochemistry and Behavior, 1983, 19, 1037-1040.	1.3	23

#	Article	IF	Citations
361	Effects of a behaviorally active antibody on the brain uptake and clearance of amyloid beta proteins. Peptides, 2005, 26, 287-294.	1.2	23
362	Insulin detemir is not transported across the blood–brain barrier. Peptides, 2010, 31, 2284-2288.	1.2	23
363	Deficient Leptin Cellular Signaling Plays a Key Role in Brain Ultrastructural Remodeling in Obesity and Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 2021, 22, 5427.	1.8	23
364	Hypoxia and Hypercarbia of Chronic Lung Disease: Minimal Effects on Anterior Pituitary Function. Southern Medical Journal, 1990, 83, 290-293.	0.3	22
365	Lack of saturable transport across the blood-brain barrier in either direction for β-amyloid1–28 (Alzheimer's disease protein). Brain Research Bulletin, 1991, 27, 819-823.	1.4	22
366	Chronic peripheral administration of somatostatin receptor subtype-4 agonist NNC 26-9100 enhances learning and memory in SAMP8 mice. European Journal of Pharmacology, 2011, 654, 53-59.	1.7	22
367	SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways. Neurobiology of Aging, 2014, 35, 159-168.	1.5	22
368	A Spectrum of Topics for 2019: Advances in Neuroinflammation, Oxidative Stress, Obesity, Diabetes Mellitus, Cardiovascular Disease, Autism, Exosomes, and Central Nervous System Diseases. Current Pharmaceutical Design, 2020, 26, 1-5.	0.9	22
369	Cytokines and the Blood–Brain Barrier. , 2009, , 3-17.		22
370	Perinatal treatment of rats with opiates affects the development of the blood-brain barrier transport system PTS-1. Neurotoxicology and Teratology, 1996, 18, 711-715.	1.2	21
371	Do Objective Measurements of Physical Function in Ambulatory Nursing Home Women Improve Assessment of Functional Status?. Journal of the American Medical Directors Association, 2007, 8, 469-476.	1.2	21
372	Opiate modulation of IL-1α, IL-2, and TNF-α transport across the blood–brain barrier. Brain, Behavior, and Immunity, 2008, 22, 1096-1102.	2.0	21
373	Telmisartan prevents diet-induced obesity and preserves leptin transport across the blood-brain barrier in high-fat diet-fed mice. Pflugers Archiv European Journal of Physiology, 2018, 470, 1673-1689.	1.3	21
374	Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro-Oncology, 2022, 24, 197-209.	0.6	21
375	Effects of neonatal treatment with Tyr-MIF-1, morphiceptin, and morphine on development, tail flick, and blood-brain barrier transport. Developmental Brain Research, 1993, 75, 207-212.	2.1	20
376	Extreme stability of Tyr-MIF-1 in CSF. Neuroscience Letters, 1994, 174, 26-28.	1.0	20
377	Measurement of Efflux Rates from Brain to Blood. , 1997, 73, 353-360.		20
378	Enkephalin, PPE mRNA, and PTS-1 in alcohol withdrawal seizure-prone and -resistant mice. Alcohol, 1998, 15, 25-31.	0.8	20

#	Article	IF	Citations
379	Peptide transport system-1 (PTS-1) for Tyr-MIF-1 and Met-enkephalin differs from the receptors for either. Brain Research, 1999, 839, 336-340.	1.1	20
380	A Pharmacologically Active Monoclonal Antibody against the Human Melanocortin-4 Receptor: Effectiveness After Peripheral and Central Administration. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 478-490.	1.3	20
381	Cardiorenal Metabolic Syndrome and Diabetic Cognopathy. CardioRenal Medicine, 2013, 3, 265-282.	0.7	20
382	Quantitative analysis of chondroitin sulfate disaccharides from human and rodent fixed brain tissue by electrospray ionization-tandem mass spectrometry. Glycobiology, 2019, 29, 847-860.	1.3	20
383	Cerebrospinal fluid lipidomics: effects of an intravenous triglyceride infusion and apoE status. Metabolomics, 2020, 16, 6.	1.4	20
384	Exchange of Peptides Between the Circulation and the Nervous System: Role of the Blood-Brain Barrier. Advances in Experimental Medicine and Biology, 1990, 274, 59-69.	0.8	20
385	Measurement of Transport of Cytokines across the Blood-Brain Barrier. Methods in Neurosciences, 1993, , 67-77.	0.5	20
386	Ethanol alters the concentration of Met-enkephalin in brain by affecting peptide transport system-1 independent of preproenkephalin mRNA. Journal of Neuroscience Research, 1997, 48, 273-280.	1.3	19
387	Internalization of the opioid growth factor, [Met ⁵]-enkephalin, is dependent on clathrin-mediated endocytosis for downregulation of cell proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2010, 299, R774-R785.	0.9	19
388	Paclitaxel Reduces Brain Injury from Repeated Head Trauma in Mice. Journal of Alzheimer's Disease, 2019, 67, 859-874.	1.2	19
389	Transport of CRH from mouse brain directly affects peripheral production of \hat{l}^2 -endorphin by the spleen. American Journal of Physiology - Endocrinology and Metabolism, 1997, 273, E1083-E1089.	1.8	18
390	Adropin correlates with aging-related neuropathology in humans and improves cognitive function in aging mice. Npj Aging and Mechanisms of Disease, 2021, 7, 23.	4.5	18
391	A historical perspective on the interactions of insulin at the bloodâ€brain barrier. Journal of Neuroendocrinology, 2021, 33, e12929.	1.2	18
392	Insulin Resistance in Peripheral Tissues and the Brain: A Tale of Two Sites. Biomedicines, 2022, 10, 1582.	1.4	18
393	Neuroimmune networks and communication pathways: the importance of location. Brain, Behavior, and Immunity, 2004, 18, 120-122.	2.0	17
394	Mouse models of neurological disorders: A view from the blood–brain barrier. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2010, 1802, 881-888.	1.8	17
395	Initial fate of prions upon peripheral infection: halfâ€life, distribution, clearance, and tissue uptake. FASEB Journal, 2011, 25, 2792-2803.	0.2	17
396	Antibody blood-brain barrier efflux is modulated by glycan modification. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2228-2239.	1.1	17

#	Article	IF	CITATIONS
397	Intranasal Insulin Transport is Preserved inÂAged SAMP8 Mice and is Altered by Albumin and Insulin Receptor Inhibition. Journal of Alzheimer's Disease, 2017, 57, 241-252.	1.2	17
398	Resistance to the sympathoexcitatory effects of insulin and leptin in late pregnant rats. Journal of Physiology, 2019, 597, 4087-4100.	1.3	17
399	Chapter 21 Possible therapeutic implications of the effects of some peptides on the brain. Progress in Brain Research, 1987, 72, 223-234.	0.9	16
400	Interactions of ?-Amyloids with the Blood?Brain Barrier. Annals of the New York Academy of Sciences, 1997, 826, 190-199.	1.8	16
401	Effects of wheatgerm agglutinin and aging on the regional brain uptake of HIV-1GP120. Life Sciences, 1999, 65, 81-89.	2.0	16
402	Preproenkephalin targeted antisenses cross the blood–brain barrier to reduce brain methionine enkephalin levels and increase voluntary ethanol drinking. Peptides, 2006, 27, 784-796.	1.2	16
403	Neutralizing anti-interleukin- $1\hat{l}^2$ antibodies reduce ischemia-related interleukin- $1\hat{l}^2$ transport across the bloodâ \in brain barrier in fetal sheep. Neuroscience, 2017, 346, 113-125.	1.1	16
404	NIH workshop report on the trans-agency blood–brain interface workshop 2016: exploring key challenges and opportunities associated with the blood, brain and their interface. Fluids and Barriers of the CNS, 2017, 14, 12.	2.4	16
405	lonophore and Biometal Modulation of P-glycoprotein Expression and Function in Human Brain Microvascular Endothelial Cells. Pharmaceutical Research, 2018, 35, 83.	1.7	16
406	Inter-alpha inhibitor proteins attenuate lipopolysaccharide-induced blood–brain barrier disruption and downregulate circulating interleukin 6 in mice. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 1090-1102.	2.4	16
407	Pericytes Suppress Brain Metastasis from Lung Cancer In Vitro. Cellular and Molecular Neurobiology, 2020, 40, 113-121.	1.7	16
408	The microvascular extracellular matrix in brains with Alzheimer's disease neuropathologic change (ADNC) and cerebral amyloid angiopathy (CAA). Fluids and Barriers of the CNS, 2020, 17, 60.	2.4	16
409	Analgesia and the blood-brain barrier transport system for Tyr-MIF-1/enkephalins: Evidence for a dissociation. Neuropharmacology, 1988, 27, 175-179.	2.0	15
410	Effect of cardiac arrest on brain weight and the permeability of the blood-brain and blood-spinal cord barrier to albumin and tumor necrosis factor-î±. Life Sciences, 1999, 65, 2127-2134.	2.0	15
411	Human immunodeficiency virus type 1 transport across the in vitro mouse brain endothelial cell monolayer. Experimental Neurology, 2005, 193, 101-109.	2.0	15
412	Predictors of serum testosterone and DHEAS in African-American men. Journal of Developmental and Physical Disabilities, 2007, 31, 070508211138001-???.	3.6	15
413	Leucine Modulates Peptide Transport System-1 Across the Blood-brain Barrier at a Stereospecific Site within the Central Nervous System. Journal of Pharmacy and Pharmacology, 2011, 43, 252-254.	1.2	15
414	Twenty-one hormones fail to inhibit the brain to blood transport system for Tyr-MIF-1 and the enkephalins in mice. Journal of Pharmacy and Pharmacology, 2011, 40, 289-291.	1.2	15

#	Article	IF	CITATIONS
415	Antisense against Amyloid- \hat{l}^2 Protein Precursor Reverses Memory Deficits and Alters Gene Expression in Neurotropic and Insulin-Signaling Pathways in SAMP8 Mice. Journal of Alzheimer's Disease, 2015, 46, 535-548.	1.2	15
416	Microvasculature of the Mouse Cerebral Cortex Exhibits Increased Accumulation and Synthesis of Hyaluronan With Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2017, 72, glw213.	1.7	15
417	The SAMP8 mouse for investigating memory and the role of insulin in the brain. Experimental Gerontology, 2017, 94, 64-68.	1.2	15
418	Identifying and categorizing spurious weight data in electronic medical records. American Journal of Clinical Nutrition, 2018, 107, 420-426.	2.2	15
419	Topiramate Protects Pericytes from Glucotoxicity: Role for Mitochondrial CA VA in Cerebromicrovascular Disease in Diabetes. Journal of Endocrinology and Diabetes, 2015, 2, .	0.2	15
420	Mechanisms of HIV Type 1-Induced Cognitive Impairment: Evidence for Hippocampal Cholinergic Involvement with Overstimulation of the VIPergic System by the Viral Coat Protein Core. AIDS Research and Human Retroviruses, 2002, 18, 1189-1195.	0.5	14
421	Passive diffusion of naltrexone into human and animal cells and upregulation of cell proliferation. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2009, 297, R844-R852.	0.9	14
422	Association Between Alzheimer Dementia Mortality Rate and Altitude in California Counties. JAMA Psychiatry, 2015, 72, 1253.	6.0	14
423	Modulators of IgG penetration through the blood-brain barrier: Implications for Alzheimer's disease immunotherapy. Human Antibodies, 2017, 25, 131-146.	0.6	14
424	DenialVersusDualism: The Blood-Brain Barrier as an Interface of the Gut-Brain Axis. Endocrinology, 2006, 147, 2609-2610.	1.4	13
425	Apolipoprotein E Genotype and Sex Influence Glucose Tolerance in Older Adults: A Cross-Sectional Study. Dementia and Geriatric Cognitive Disorders Extra, 2016, 6, 78-89.	0.6	13
426	Traumatic Brain Injury Broadly Affects GABAergic Signaling in Dentate Gyrus Granule Cells. ENeuro, 2021, 8, ENEURO.0055-20.2021.	0.9	13
427	Binding of Tyr-MIF-1 to isolated brain capillaries. Brain Research Bulletin, 1986, 17, 829-831.	1.4	12
428	Orally administered cyclo(His-Pro) reduces ethanol-induced narcosis in mice. Pharmacology Biochemistry and Behavior, 1992, 43, 939-941.	1.3	12
429	The SAMP8 mouse as a model for Alzheimer disease: studies from Saint Louis University. International Congress Series, 2004, 1260, 23-28.	0.2	12
430	Mediation of chronic pain: Not by neurons alone. Pain, 2006, 124, 1-2.	2.0	12
431	Pharmacologic manipulation of lysosomal enzyme transport across the blood–brain barrier. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 476-486.	2.4	12
432	Assessing blood granulocyte colony-stimulating factor as a potential biomarker of acute traumatic brain injury in mice and humans. Brain, Behavior, and Immunity, 2016, 52, 81-87.	2.0	12

#	Article	IF	CITATIONS
433	Molecular Mechanisms of Intranasal Insulin in SAMP8 Mice. Journal of Alzheimer's Disease, 2019, 71, 1361-1373.	1.2	12
434	Prolonged culturing of iPSC-derived brain endothelial-like cells is associated with quiescence, downregulation of glycolysis, and resistance to disruption by an Alzheimer's brain milieu. Fluids and Barriers of the CNS, 2022, 19, 10.	2.4	12
435	Withdrawal from alcohol in withdrawal seizure-prone and -resistant mice: evidence for enkephalin resistance. Pharmacology Biochemistry and Behavior, 2001, 68, 379-387.	1.3	11
436	Effects of chronic ethanol on brain and serum level of methionine enkephalin. Peptides, 2003, 24, 1935-1940.	1.2	11
437	Disability in obese elderly women: Lower limb strength and recreational physical activity. Obesity Research and Clinical Practice, 2007, 1, 39-51.	0.8	11
438	Immunotherapy and neuroimmunology in Alzheimer's disease: a perspective from the blood–brain barrier. Immunotherapy, 2010, 2, 1-3.	1.0	11
439	Comparison of the rate of dedifferentiation with increasing passages among cell sources for an in vitro model of the blood–brain barrier. Journal of Neural Transmission, 2020, 127, 1117-1124.	1.4	11
440	The neurovascular extracellular matrix in health and disease. Experimental Biology and Medicine, 2021, 246, 835-844.	1.1	11
441	The general anesthesia induced by various drugs differentially affects analgesia and its variability. Pharmacology Biochemistry and Behavior, 1988, 31, 397-403.	1.3	10
442	Effects of various reproductive hormones on the penetration of LHRH across the blood-brain barrier. Pharmacology Biochemistry and Behavior, 1992, 41, 255-257.	1.3	10
443	CNS effects of peptides: A cross-listing of peptides and their central actions published in the journal Peptides, 1986–1993. Peptides, 1994, 15, 1105-1155.	1.2	10
444	Study of Passage of Peptides across the Blood?Brain Barrier: Biological Effects of cyclo(His-Pro) after Intravenous and Oral Administration. Annals of the New York Academy of Sciences, 1994, 739, 101-107.	1.8	10
445	The dam breaks: disruption of the blood-brain barrier in diabetes mellitus. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2595-H2596.	1.5	10
446	Hyperhomocysteinemic Mice Show Cognitive Impairment Without Features of Alzheimer's Disease Phenotype. Journal of Alzheimer's Disease, 2013, 35, 59-66.	1.2	10
447	Insulin BBB pharmacokinetics in young apoE male and female transgenic mice. PLoS ONE, 2020, 15, e0228455.	1.1	10
448	Blind mice are not impaired in T-maze footshock avoidance acquisition and retention. Physiology and Behavior, 2002, 76, 531-538.	1.0	9
449	Evidence that the species barrier of human immunodeficiency virus-1 does not extend to uptake by the blood–brain barrier: Comparison of mouse and human brain microvessels. Life Sciences, 2005, 77, 2361-2368.	2.0	9
450	Adiponectin levels in obese and non-obese middle-aged African–American women. Obesity Research and Clinical Practice, 2007, 1, 27-37.	0.8	9

#	Article	IF	Citations
451	The Blood Brain Barrier. , 2008, , 21-38.		9
452	Chronic elevation of plasma vascular endothelial growth factor-A (VEGF-A) is associated with a history of blast exposure. Journal of the Neurological Sciences, 2020, 417, 117049.	0.3	9
453	The Bradykinin B2 Receptor Agonist (NG291) Causes Rapid Onset of Transient Blood–Brain Barrier Disruption Without Evidence of Early Brain Injury. Frontiers in Neuroscience, 2021, 15, 791709.	1.4	9
454	Selective uptake of the somatostatin analog RC-160 across the blood-brain tumor barrier of mice with KHT sarcomas. Anti-Cancer Drugs, 1992, 3, 519-524.	0.7	8
455	The History of Neuropeptide Research: Version 5.a. Annals of the New York Academy of Sciences, 1996, 780, 1-18.	1.8	8
456	Regional differences in the metabolism of Tyr-MIF-1 and Tyr-W-MIF-1 by rat brain mitochondria. Biochemical Pharmacology, 1998, 55, 33-36.	2.0	8
457	Effects of peptides: a cross-listing of peptides and their central actions published in the journal Peptides from 1994 through 1998. Peptides, 1999, 20, 1127-1138.	1.2	8
458	Melanocyteâ€Stimulating Hormone Releaseâ€Inhibiting Factorâ€1 (MIFâ€1) Can Be Formed from Tyrâ€MIFâ€1 in Mitochondria but Not in Brain Homogenate. Journal of Neurochemistry, 1995, 64, 1855-1859.	Brain 2.1	8
459	Influence of Ethanol Dependence and Methionine Enkephalin Antisense on Serum Endomorphin-1 and Methionine Enkephalin Levels. Alcoholism: Clinical and Experimental Research, 2004, 28, 792-796.	1.4	8
460	Computational and In Vitro Studies of Blast-Induced Blood-Brain Barrier Disruption. SIAM Journal of Scientific Computing, 2016, 38, B347-B374.	1.3	8
461	Development of rhenacarborane complexes as central nervous system (CNS) drug delivery agents. Inorganica Chimica Acta, 2017, 466, 139-144.	1.2	8
462	Effects of apolipoprotein E isoform, sex, and diet on insulin BBB pharmacokinetics in mice. Scientific Reports, 2021, 11, 18636.	1.6	8
463	Leptin and the Bloodâ€Brain Barrier: Curiosities and Controversies. , 2021, 11, 2351-2369.		8
464	Insulin blood-brain barrier transport and interactions are greater following exercise in mice. Journal of Applied Physiology, 2022, 132, 824-834.	1.2	8
465	Brain-to-Blood Transport of Peptides and the Alcohol Withdrawal Syndrome. Annals of the New York Academy of Sciences, 1994, 739, 108-118.	1.8	7
466	Transport of an Antifungal Trypsin Inhibitor Isolated from Corn across the Blood-Brain Barrier. Antimicrobial Agents and Chemotherapy, 2002, 46, 2633-2635.	1.4	7
467	Antisense therapeutics and the treatment of CNS disease. Frontiers in Bioscience - Landmark, 2004, 9, 1720.	3.0	7
468	Effects of chronic ethanol administration on brain interstitial fluid levels of Methionine-enkephalin as measured by microdialysis in vivo. Peptides, 2006, 27, 2201-2206.	1.2	7

#	Article	IF	CITATIONS
469	Decreased blood–brain barrier expression of P-glycoprotein in Alzheimer's disease: impact on pathogenesis and brain access of therapeutic agents. Therapeutic Delivery, 2011, 2, 841-844.	1.2	7
470	Pituitary adenylate cyclaseâ€activating polypeptide enhances saliva secretion via direct binding to PACAP receptors of major salivary glands in mice. Anatomical Record, 2016, 299, 1293-1299.	0.8	7
471	Modest Blood-Brain Barrier Permeability of the Cyclodextrin Kleptose: Modification by Efflux and Luminal Surface Binding. Journal of Pharmacology and Experimental Therapeutics, 2019, 371, 121-129.	1.3	7
472	Intranasal Delivery: Effects on the Neuroimmune Axes and Treatment of Neuroinflammation. Pharmaceutics, 2020, 12, 1120.	2.0	7
473	Peptide Transport System-1., 1995, , 111-117.		7
474	Pituitary adenylate cyclase-activating polypeptide: Protective effects in stroke and dementia. Peptides, 2020, 130, 170332.	1.2	7
475	Changes in Brain Matrix Glycan Sulfation Associate With Reactive Gliosis and Motor Coordination in Mice With Head Trauma. Frontiers in Behavioral Neuroscience, 2021, 15, 745288.	1.0	7
476	Transcellular routes of blood–brain barrier disruption. Experimental Biology and Medicine, 2022, 247, 788-796.	1.1	7
477	Uptake, Content Regulation of Plasma Concentrations, and Binding of Tyr-MIF-1 by the Adrenals. Neuroendocrinology, 1993, 57, 541-549.	1.2	6
478	Ferrotransferrin and Antibody against the Transferrin Receptor as Potential Vehicles for Drug Delivery across the Mammalian Blood-Brain Barrier into the Central Nervous System. Methods in Neurosciences, 1994, 21, 93-117.	0.5	6
479	Biodistribution of the lipophilic complexes 59Fe(RsalH2)3tach (R = H, NO2 and OMe) and 68Ga(NO2salH2)3tach. Nuclear Medicine and Biology, 1996, 23, 645-652.	0.3	6
480	Transport of Antisense Across the Blood–Brain Barrier. , 2005, 106, 237-252.		6
481	The Effect of Cardiac Arrest on the Permeability of the Mouse Bloodâ€Brain and Bloodâ€Spinal Cord Barriers to PACAP. Annals of the New York Academy of Sciences, 2000, 921, 289-292.	1.8	6
482	Blood–Brain Barrier Transport of Cytokines. NeuroImmune Biology, 2008, , 93-107.	0.2	6
483	Editorial [Hot Topic: The Blood-Brain Barrier as a Cause of Disease (Executive Editor: William A. Banks)]. Current Pharmaceutical Design, 2008, 14, 1553-1554.	0.9	6
484	Extrahypothalamic Effects of Leptin: A Therapeutic for Depression and Dementia?. Endocrinology, 2011, 152, 2539-2541.	1.4	6
485	Protective effects of an antiâ€melanocortinâ€4 receptor scFv derivative in lipopolysaccharideâ€induced cachexia in rats. Journal of Cachexia, Sarcopenia and Muscle, 2013, 4, 79-88.	2.9	6
486	Artificial Emotions: Robots Caring for the Elderly. Journal of the American Medical Directors Association, 2013, 14, 635-636.	1.2	6

#	Article	IF	CITATIONS
487	Alpha Adrenergic Induction of Transport of Lysosomal Enzyme across the Blood-Brain Barrier. PLoS ONE, 2015, 10, e0142347.	1.1	6
488	Effect of controlled cortical impact on the passage of pituitary adenylate cyclase activating polypeptide (PACAP) across the blood-brain barrier. Peptides, 2018, 99, 8-13.	1.2	6
489	The impact of acute rosiglitazone on insulin pharmacokinetics at the bloodâ€brain barrier. Endocrinology, Diabetes and Metabolism, 2020, 3, e00149.	1.0	6
490	Pitavastatin Ameliorates Lipopolysaccharide-Induced Blood-Brain Barrier Dysfunction. Biomedicines, 2021, 9, 837.	1.4	6
491	Permeability of the Blood-Brain Barrier to Circulating Free Fatty Acids. , 1997, , 3-14.		6
492	Amyloid Beta Pathology Exacerbates Weight Loss and Brain Cytokine Responses following Low-Dose Lipopolysaccharide in Aged Female Tg2576 Mice. International Journal of Molecular Sciences, 2022, 23, 2377.	1.8	6
493	Uptake of peptides containing Tyr-Pro by human and mouse erythrocytes. Biochemical Pharmacology, 1990, 40, 607-614.	2.0	5
494	Delayed degradation of Tyr-MIF-1 in neonatal rat plasma. Peptides, 1994, 15, 1561-1563.	1.2	5
495	Endocrine and metabolic changes in human aging. Age, 2000, 23, 103-115.	3.0	5
496	A Vagina Monologue: Mom's Stress, Bugs, and Baby's Brain. Endocrinology, 2015, 156, 3066-3068.	1.4	5
497	Negative allelopathic effects of rutin and quercetin on fourteen soil and enteric microbes. Biochemical Systematics and Ecology, 1978, 6, 1-3.	0.6	4
498	Peptides and the senescent blood-brain barrier. Neurobiology of Aging, 1988, 9, 48-49.	1.5	4
499	A Giant Prolactinoma and the Effect of Chronic Bromocriptine Therapy on Basal and TRH-Stimulated Serum Prolactin Levels. Hormone Research, 1991, 35, 167-169.	1.8	4
500	In Vitro Methods in the Study of Viral and Prion Permeability Across the Blood–Brain Barrier. Cellular and Molecular Neurobiology, 2005, 25, 171-181.	1.7	4
501	Differentiating the Influences of Aging and Adiposity on Brain Weights, Levels of Serum and Brain Cytokines, Gastrointestinal Hormones, and Amyloid Precursor Protein. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2016, 71, 21-29.	1.7	4
502	Novel Concepts from Novel Peptides. Annals of the New York Academy of Sciences, 1994, 739, 1-10.	1.8	3
503	Antiaging methods and medicines for the memory. Clinics in Geriatric Medicine, 2004, 20, 317-328.	1.0	3
504	Drug transport into the central nervous system: using newer findings about the blood–brain barriers. Drug Delivery and Translational Research, 2012, 2, 152-159.	3.0	3

#	Article	IF	Citations
505	New horizons for future research – Critical issues to consider for maximizing research excellence and impact. Molecular Metabolism, 2018, 14, 53-59.	3.0	3
506	Effects of Rapamycin on Insulin Brain Endothelial Cell Binding and Blood–Brain Barrier Transport. Medical Sciences (Basel, Switzerland), 2021, 9, 56.	1.3	3
507	Transport of Pituitary Adenylate Cyclase Activating Polypeptide Across the Blood–Brain Barrier: Consequences for Disease States and Therapeutic Effects. Current Topics in Neurotoxicity, 2016, , 423-432.	0.4	3
508	Selective Transport Across the Blood-Brain Barrier. Annals of Internal Medicine, 1986, 105, 472.	2.0	3
509	The next chapter for COVID-19: A respiratory virus inflames the brain. Brain, Behavior, and Immunity, 2022, 101, 286-287.	2.0	3
510	Increase in plasma Tyr-MIF-1-like immunoreactivity after hypophysectomy is robust and reversible by corticosterone. Neuropeptides, 1995, 28, 65-71.	0.9	2
511	Role of LPS and receptor subtypes in the uptake of TNF by the murine lung. Life Sciences, 2001, 69, 791-802.	2.0	2
512	Development of peptide receptor binding assays: Methods to avoid false negatives. Regulatory Peptides, 2009, 158, 97-102.	1.9	2
513	The Blood-Brain Barriers. , 2017, , 5-24.		2
514	Methods Employed to Assess Weight Loss in Older Adults by Means of Electronic Medical Records: A Systematic Review. Journal of Nutrition in Gerontology and Geriatrics, 2017, 36, 18-30.	0.4	2
515	Chronic Fatigue Syndrome: Possible Integration of Hormonal and Immunological Observations. , 1997, , 161-192.		2
516	Measurement of Phosphorothioate Oligodeoxynucleotide Antisense Transport Across the Blood–Brain Barrier. Methods in Molecular Biology, 2011, 789, 337-342.	0.4	2
517	Role of the Blood–Brain Barrier in Communication between the Central Nervous System and the Peripheral Tissues. , 2004, , 73-81.		1
518	Mechanisms of Antisense Transport across the Blood–Brain Barrier. , 2004, , 99-105.		1
519	Commentaries on "Insulin Resistance, Affective Disorders, and Alzheimer's Disease: Review and Hypothesis" and Authors' Response: Commentary. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, M184-M185.	1.7	1
520	Gut-Brain Communications: Not the Same at All Ages. Endocrinology, 2010, 151, 852-854.	1.4	1
521	Foreword:. Current Pharmaceutical Design, 2014, 21, 1-2.	0.9	1
522	Commentary on the 2018 Named Series on blood-brain interfaces: Roles of neuroimmunomodulation in health and disease. Brain, Behavior, and Immunity, 2018, 74, 3-6.	2.0	1

#	Article	IF	Citations
523	1795-P: Novel Techniques for the Analysis of Brain Chondroitin Sulfates in Rodents and Humans with Type 2 Diabetes. Diabetes, 2019, 68, 1795-P.	0.3	1
524	Brain uptake and distribution patterns of 2-hydroxypropyl-ß-cyclodextrin after intrathecal and intranasal administration. Journal of Pharmacy and Pharmacology, 2022, 74, 1152-1159.	1.2	1
525	Measurement of Bloodâ€Brain Barrier Disruption in Mice Following Ozone Exposure Using Highly Sensitive Radiotracer Assays. Current Protocols, 2022, 2, .	1.3	1
526	Blood to brain passage of PACAP27. Regulatory Peptides, 1992, 37, 337.	1.9	0
527	The Blood?Brain Barrier: Methods for the Study of Peptide Transport Mechanisms. Introduction to Part II. Annals of the New York Academy of Sciences, 1994, 739, 87-88.	1.8	0
528	Psychologic Profiles as Predictors of Success in a Cardiovascular Risk Factors Life-style Intervention Program. Southern Medical Journal, 1996, 89, 971-976.	0.3	0
529	Saturable transport of the neurokinin-1 non-peptide antagonist LY303870 across the rat blood-brain barrier after intravenous administration. Life Sciences, 2001, 69, 1683-1689.	2.0	0
530	Other Dementias., 0,, 1111-1133.		0
531	Leptin, Insulin and Blood-Brain Barrier Relations in Obesity. , 2005, , 199-215.		0
532	Toward better times: The period of improving animal models in the quest for the treatment of disease*. Critical Care Medicine, 2006, 34, 2865-2866.	0.4	0
533	A Tribute to a Living Legend. Current Pharmaceutical Design, 2012, 18, i-i.	0.9	0
534	Diseases Mediated by the BBB., 2013, , 1667-1671.		0
535	Ingestive Peptides. , 2013, , 1677-1681.		0
536	Quantifying altitude of human habitation in studies of human health using geographical name server data. Geospatial Health, 2016, 11, 463.	0.3	0
537	F4â€01â€04: APOE GENOTYPE INFLUENCES BRAIN TO BLOOD GLUCOSE RATIOS AFTER HIGH FAT FEEDING. Alzheimer's and Dementia, 2018, 14, P1383.	0.4	0
538	Age and cognitive diagnosis influence cerebrospinal fluid ketone levels after a triglyceride infusion in older adults. Alzheimer's and Dementia, 2020, 16, e037716.	0.4	0
539	Transport of the Chemokines CCL5 and CCL2 Across the Mouse Bloodâ€Brain Barrier under Physiological and Inflammatory Conditions. FASEB Journal, 2021, 35, .	0.2	0
540	Editorial: Application for Nanotechnology for the Treatment of Brain Diseases and Disorders. Frontiers in Bioengineering and Biotechnology, 2021, 9, 743160.	2.0	0

#	Article	IF	Citations
541	The Effect of Cardiac Arrest on the Blood-Testis Barrier to Albumin and Tumor Necrosis Factor-Alpha in the Mouse. The Showa University Journal of Medical Sciences, 2000, 12, 119-125.	0.1	0
542	Diseases Mediated by the BBB: From Alzheimer's to Obesity. , 2006, , 1475-1479.		0
543	Ingestive Peptides and the Blood–Brain Barrier. , 2006, , 1455-1459.		0
544	Ischemia Accentuates the Transfer of Interleukinâ€1β Across the Bloodâ€Brain Barrier in the Ovine Fetus. FASEB Journal, 2012, 26, 707.1.	0.2	0
545	Relationship of Clinical to Basic Research with Peptides as Illustrated by MSH., 1986,, 645-652.		0
546	Science, Citation, and Funding. Science, 1991, 251, 1410-1410.	6.0	0
547	1958-P: Role of Leptin in Blood-Brain Barrier Dysfunction. Diabetes, 2019, 68, .	0.3	O
548	1771-P: Hypothalamic Perineuronal Net Assembly Is Required for Sustained Diabetes Remission Induced by FGF1. Diabetes, 2020, 69, .	0.3	0
549	Viable human brain microvessels for the study of aging and neurodegenerative diseases. Microvascular Research, 2022, 140, 104282.	1.1	O
550	Abba J. Kastin – Obituary. Peptides, 2022, , 170804.	1.2	0