Jaime MartÃ-n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632059/publications.pdf

Version: 2024-02-01

361413 377865 48 1,493 20 34 citations h-index g-index papers 48 48 48 820 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Analysis of temperature and altitude effects on the Global Energy Balance during WLTC. International Journal of Engine Research, 2022, 23, 1831-1849.	2.3	3
2	Improvement in engine thermal management by changing coolant and oil mass. Applied Thermal Engineering, 2022, 212, 118513.	6.0	9
3	Diesel engine optimization and exhaust thermal management by means of variable valve train strategies. International Journal of Engine Research, 2021, 22, 1196-1213.	2.3	14
4	Characterization of the turbulent flame front surface in spark ignition engines during spark ignition operation to identify controlled auto-ignition and abnormal combustion. International Journal of Engine Research, 2021, 22, 2149-2168.	2.3	0
5	Effect of the exhaust thermal insulation on the engine efficiency and the exhaust temperature under transient conditions. International Journal of Engine Research, 2021, 22, 2869-2883.	2.3	11
6	Assessing the optimum combustion under constrained conditions. International Journal of Engine Research, 2020, 21, 811-823.	2.3	10
7	Estimation of the in-cylinder residual mass fraction at intake valve closing in a two-stroke high-speed direct-injection compression-ignition engine. International Journal of Engine Research, 2020, 21, 838-855.	2.3	1
8	Analysis of the energy balance during World harmonized Light vehicles Test Cycle in warmed and cold conditions using a Virtual Engine. International Journal of Engine Research, 2020, 21, 1037-1054.	2.3	18
9	Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine. Energies, 2020, 13, 4561.	3.1	8
10	Application of a zero-dimensional model to assess the effect of swirl on indicated efficiency. International Journal of Engine Research, 2019, 20, 837-848.	2.3	3
11	Improvement and application of a methodology to perform the Global Energy Balance in internal combustion engines. Part 1: Global Energy Balance tool development and calibration. Energy, 2018, 152, 666-681.	8.8	14
12	A general model to evaluate mechanical losses and auxiliary energy consumption in reciprocating internal combustion engines. Tribology International, 2018, 123, 161-179.	5.9	22
13	Methodology for Optical Engine Characterization by Means of the Combination of Experimental and Modeling Techniques. Applied Sciences (Switzerland), 2018, 8, 2571.	2.5	11
14	Development and Validation of a Submodel for Thermal Exchanges in the Hydraulic Circuits of a Global Engine Model. , 2018, , .		6
15	Evaluation of swirl effect on the Global Energy Balance of a HSDI Diesel engine. Energy, 2017, 122, 168-181.	8.8	22
16	Implementation of two color method to investigate late cycle soot oxidation process in a CI engine under low load conditions. Applied Thermal Engineering, 2017, 113, 878-890.	6.0	22
17	Effect of in-cylinder swirl on engine efficiency and heat rejection in a light-duty diesel engine. International Journal of Engine Research, 2017, 18, 81-92.	2.3	3
18	Swirl ratio and post injection strategies to improve late cycle diffusion combustion in a light-duty diesel engine. Applied Thermal Engineering, 2017, 123, 365-376.	6.0	34

#	Article	IF	CITATIONS
19	Characterization of In-Cylinder Soot Oxidation Using Two-Color Pyrometry in a Production Light-Duty Diesel Engine. , 2016 , , .		8
20	Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode. Energy, 2016, 115, 1305-1319.	8.8	17
21	Understanding the performance of the multiple injection gasoline partially premixed combustion concept implemented in a 2-Stroke high speed direct injection compression ignition engine. Applied Energy, 2016, 161, 465-475.	10.1	33
22	Experimental and Theoretical Analysis of the Energy Balance in a DI Diesel Engine. , 2015, , .		9
23	Experimental analysis of the global energy balance in a DI diesel engine. Applied Thermal Engineering, 2015, 89, 545-557.	6.0	48
24	In-cylinder soot radiation heat transfer in direct-injection diesel engines. Energy Conversion and Management, 2015, 106, 414-427.	9.2	35
25	An adapted heat transfer model for engines with tumble motion. Applied Energy, 2015, 158, 190-202.	10.1	13
26	Development of a control-oriented model to optimise fuel consumption and NOX emissions in a DI Diesel engine. Applied Energy, 2014, 119, 405-416.	10.1	33
27	A new methodology for uncertainties characterization in combustion diagnosis and thermodynamic modelling. Applied Thermal Engineering, 2014, 71, 389-399.	6.0	67
28	A Soot Radiation Model for Diesel Sprays. , 2012, , .		8
28	A Soot Radiation Model for Diesel Sprays. , 2012, , . A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32, 891-904.	1.9	8
	A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32,	1.9	
29	A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32, 891-904. A complete OD thermodynamic predictive model for direct injection diesel engines. Applied Energy,		40
30	A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32, 891-904. A complete OD thermodynamic predictive model for direct injection diesel engines. Applied Energy, 2011, 88, 4632-4641. Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines	10.1	40 150
29 30 31	A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32, 891-904. A complete OD thermodynamic predictive model for direct injection diesel engines. Applied Energy, 2011, 88, 4632-4641. Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 2011, 31, 2869-2876. Semiempirical in-cylinder pressure based model for NOX prediction oriented to control applications.	10.1	40 150 34
29 30 31 32	A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32, 891-904. A complete OD thermodynamic predictive model for direct injection diesel engines. Applied Energy, 2011, 88, 4632-4641. Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 2011, 31, 2869-2876. Semiempirical in-cylinder pressure based model for NOX prediction oriented to control applications. Applied Thermal Engineering, 2011, 31, 3275-3275. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of	10.1 6.0 6.0	40 150 34 56
29 30 31 32	A Tool for Predicting the Thermal Performance of a Diesel Engine. Heat Transfer Engineering, 2011, 32, 891-904. A complete OD thermodynamic predictive model for direct injection diesel engines. Applied Energy, 2011, 88, 4632-4641. Adaptive determination of cut-off frequencies for filtering the in-cylinder pressure in diesel engines combustion analysis. Applied Thermal Engineering, 2011, 31, 2869-2876. Semiempirical in-cylinder pressure based model for NOX prediction oriented to control applications. Applied Thermal Engineering, 2011, 31, 3275-3275. Investigation of Diesel combustion using multiple injection strategies for idling after cold start of passenger-car engines. Experimental Thermal and Fluid Science, 2010, 34, 857-865. A contribution to film coefficient estimation in piston cooling galleries. Experimental Thermal and	10.1 6.0 6.0	40 150 34 56 50

#	Article	IF	CITATIONS
37	Combustion noise level assessment in direct injection Diesel engines by means of in-cylinder pressure components. Measurement Science and Technology, 2007, 18, 2131-2142.	2.6	70
38	Experiments on the influence of inlet charge and coolant temperature on performance and emissions of a DI Diesel engine. Experimental Thermal and Fluid Science, 2006, 30, 633-641.	2.7	74
39	Influence of measurement errors and estimated parameters on combustion diagnosis. Applied Thermal Engineering, 2006, 26, 226-236.	6.0	146
40	Effect of the trapped mass and its composition on the heat transfer in the compression cycle of a reciprocating engine. Applied Thermal Engineering, 2005, 25, 2842-2853.	6.0	21
41	Computational Study of Heat Transfer to the Walls of a DI Diesel Engine. , 0, , .		35
42	Development of a Mixing and Combustion Zero-Dimensional Model for Diesel Engines. , 0, , .		22
43	A New Tool to Perform Global Energy Balances in DI Diesel Engines. SAE International Journal of Engines, 0, 7, 43-59.	0.4	64
44	Analysis of Engine Walls Thermal Insulation: Performance and Emissions. , 0, , .		12
45	An Investigation of Radiation Heat Transfer in a Light-Duty Diesel Engine. SAE International Journal of Engines, 0, 8, 2199-2212.	0.4	13
46	Evaluation of EGR Effect on the Global Energy Balance of a High Speed DI Diesel Engine., 0,,,.		7
47	A Combination of Swirl Ratio and Injection Strategy to Increase Engine Efficiency. SAE International Journal of Engines, 0, 10, 1204-1216.	0.4	17
48	Development of an Integrated Virtual Engine Model to Simulate New Standard Testing Cycles. , 0, , .		20