
Mania Ackermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2632003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-Scale Hematopoietic Differentiation of Human Induced Pluripotent Stem Cells Provides Granulocytes or Macrophages for Cell Replacement Therapies. Stem Cell Reports, 2015, 4, 282-296.	2.3	173
2	Pulmonary transplantation of macrophage progenitors as effective and long-lasting therapy for hereditary pulmonary alveolar proteinosis. Science Translational Medicine, 2014, 6, 250ra113.	5.8	106
3	Bioreactor-based mass production of human iPSC-derived macrophages enables immunotherapies against bacterial airway infections. Nature Communications, 2018, 9, 5088.	5.8	105
4	Gene Correction of Human Induced Pluripotent Stem Cells Repairs the Cellular Phenotype in Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 167-182.	2.5	85
5	Lost in translation: pluripotent stem cellâ€derived hematopoiesis. EMBO Molecular Medicine, 2015, 7, 1388-1402.	3.3	76
6	TALEN-mediated functional correction of X-linked chronic granulomatous disease in patient-derived induced pluripotent stem cells. Biomaterials, 2015, 69, 191-200.	5.7	76
7	A ubiquitous chromatin opening element prevents transgene silencing in pluripotent stem cells and their differentiated progeny. Stem Cells, 2013, 31, 488-499.	1.4	70
8	A minimal ubiquitous chromatin opening element (UCOE) effectively prevents silencing of juxtaposed heterologous promoters by epigenetic remodeling in multipotent and pluripotent stem cells. Nucleic Acids Research, 2015, 43, 1577-1592.	6.5	70
9	Pulmonary Transplantation of Human Induced Pluripotent Stem Cell–derived Macrophages Ameliorates Pulmonary Alveolar Proteinosis. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 350-360.	2.5	57
10	Enhanced Ex Vivo Generation of Erythroid Cells from Human Induced Pluripotent Stem Cells in a Simplified Cell Culture System with Low Cytokine Support. Stem Cells and Development, 2019, 28, 1540-1551.	1.1	45
11	Promoter and lineage independent anti-silencing activity of the A2 ubiquitous chromatin opening element for optimized human pluripotent stem cell-based gene therapy. Biomaterials, 2014, 35, 1531-1542.	5.7	42
12	iPSC-Derived Macrophages Effectively Treat Pulmonary Alveolar Proteinosis in Csf2rb-Deficient Mice. Stem Cell Reports, 2018, 11, 696-710.	2.3	40
13	Concise Review: Towards the Clinical Translation of Induced Pluripotent Stem Cell-Derived Blood Cells— <i>Ready for Take-Off</i> . Stem Cells Translational Medicine, 2019, 8, 332-339.	1.6	31
14	Continuous human iPSC-macrophage mass production by suspension culture in stirred tank bioreactors. Nature Protocols, 2022, 17, 513-539.	5.5	28
15	Impaired IFNÎ ³ -Signaling and Mycobacterial Clearance in IFNÎ ³ R1-Deficient Human iPSC-Derived Macrophages. Stem Cell Reports, 2018, 10, 7-16.	2.3	25
16	Murine iPSC-Derived Macrophages as a Tool for Disease Modeling of Hereditary Pulmonary Alveolar Proteinosis due to Csf2rb Deficiency. Stem Cell Reports, 2016, 7, 292-305.	2.3	23
17	TALEN-mediated functional correction of human iPSC-derived macrophages in context of hereditary pulmonary alveolar proteinosis. Scientific Reports, 2017, 7, 15195.	1.6	22
18	Beyond "Big Eaters†The Versatile Role of Alveolar Macrophages in Health and Disease. International Journal of Molecular Sciences, 2021, 22, 3308.	1.8	21

MANIA ACKERMANN

#	Article	IF	CITATIONS
19	Gene correction of HAX1 reversed Kostmann disease phenotype in patient-specific induced pluripotent stem cells. Blood Advances, 2017, 1, 903-914.	2.5	18
20	A 3D iPSC-differentiation model identifies interleukin-3 as a regulator of early human hematopoietic specification. Haematologica, 2021, 106, 1354-1367.	1.7	16
21	Ex vivo Generation of Genetically Modified Macrophages from Human Induced Pluripotent Stem Cells. Transfusion Medicine and Hemotherapy, 2017, 44, 135-142.	0.7	15
22	Lentiviral MGMTP140K-mediated inÂvivo selection employing a ubiquitous chromatin opening element (A2UCOE) linked to a cellular promoter. Biomaterials, 2014, 35, 7204-7213.	5.7	12
23	Biphasic modulation of Wnt signaling supports efficient foregut endoderm formation from human pluripotent stem cells. Cell Biology International, 2016, 40, 534-548.	1.4	12
24	Targeted Integration of Inducible Caspase-9 in Human iPSCs Allows Efficient in vitro Clearance of iPSCs and iPSC-Macrophages. International Journal of Molecular Sciences, 2020, 21, 2481.	1.8	12
25	The Immune-Modulatory Properties of iPSC-Derived Antigen-Presenting Cells. Transfusion Medicine and Hemotherapy, 2020, 47, 444-453.	0.7	11
26	Human Lentiviral Gene Therapy Restores the Cellular Phenotype of Autosomal Recessive Complete IFN-γR1 Deficiency. Molecular Therapy - Methods and Clinical Development, 2020, 17, 785-795.	1.8	10
27	Restored Macrophage Function Ameliorates Disease Pathophysiology in a Mouse Model for IL10 Receptor-deficient Very Early Onset Inflammatory Bowel Disease. Journal of Crohn's and Colitis, 2021, 15, 1588-1595.	0.6	10
28	The CpG-sites of the CBX3 ubiquitous chromatin opening element are critical structural determinants for the anti-silencing function. Scientific Reports, 2017, 7, 7919.	1.6	8
29	Human iPSC-derived macrophages for efficient Staphylococcus aureus clearance in a murine pulmonary infection model. Blood Advances, 2021, 5, 5190-5201.	2.5	8
30	An immune cell spray (ICS) formulation allows for the delivery of functional monocyte/macrophages. Scientific Reports, 2018, 8, 16281.	1.6	7
31	Rescue from Pseudomonas aeruginosa Airway Infection via Stem Cell Transplantation. Molecular Therapy, 2021, 29, 1324-1334.	3.7	6
32	Targeted biallelic integration of an inducible Caspase 9 suicide gene in iPSCs for safer therapies. Molecular Therapy - Methods and Clinical Development, 2022, 26, 84-94.	1.8	6
33	The Ubiquitous Chromatin Opening Element (UCOE) Enhances Lentiviral Cytidine Deaminase (CDD) Expression and Drug Resistance During Hematopoietic Differentiation of Murine Induced Pluripotent Stem Cells (iPSCs),. Blood, 2011, 118, 4179-4179.	0.6	3
34	IL-3 Specifies Early Hematopoietic Development from Human iPSCs and Synergizes with M-CSF and G-CSF on Myeloid Differentiation. Blood, 2014, 124, 4308-4308.	0.6	0
35	Polarization of human iPSC-derived macrophages directs their immunological response to secondary pro-inflammatory stimuli. Journal of Immunology and Regenerative Medicine, 2022, , 100061.	0.2	0